UNIT-IV

FOURIER TRANSFORMS

Convolution Theorem and Parseval's identity.

The convolution of two functions $f(x)$ and $g(x)$ is defined as

$$
f(x)^{*} g(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) \cdot g(x-t) \cdot d t .
$$

Convolution Theorem for Fourier Transforms.

The Fourier Transform of the convolution of $f(x)$ and $g(x)$ is the product of theirFourier Transforms,

$$
\text { i.e, } \mathrm{F}\left\{\mathrm{f}(\mathrm{x})^{*} \mathrm{~g}(\mathrm{x})\right\}=\mathrm{F}\{\mathrm{f}(\mathrm{x}) . \mathrm{F}\{\mathrm{~g}(\mathrm{x})\} .
$$

Proof:
$F\{f(x) * g(x)\}=F\{(f * g) x)\}$

$$
=\frac{}{\sqrt{2 \pi-\infty}} \int(f * g)(x) \cdot e^{i s x} \cdot d x .
$$

$$
=\frac{1}{\sqrt{2 \pi-\infty}} \int^{\infty}\left\{\frac{1}{\sqrt{2 \pi}-\infty} \int_{-\infty}^{\infty} f(t) \cdot g(x-t) \cdot d t e^{i s x} d x .\right.
$$

Osserive opmarie out spread

$$
\begin{aligned}
& =\frac{1}{\sqrt{ } 2 \pi} \int_{-\infty}^{\infty} f(t)\left\{\begin{array}{ll}
1 & \infty \\
\sqrt{ } 2 \pi & -\infty
\end{array} g_{-\infty}^{\infty}(x-t) \cdot e^{i s x} d x . d t .\right. \\
& \text { (by changing the order of integration). } \\
& =\frac{1}{\sqrt{ } 2 \pi-\infty} \int_{\mathrm{f}}^{\infty} \mathrm{f}(\mathrm{t}) . \mathrm{F}\{g(x-t)\} . d t .
\end{aligned}
$$

$$
\begin{aligned}
& =G(s) \cdot \frac{1}{\sqrt{2 \pi-\infty}} \int_{\int(t) \cdot}^{\infty} e^{i s t} d t . \\
& =F(s) \cdot G(s) \text {. } \\
& \text { Hence, } F\{f(x) * g(x)\}=F\{f(x) . F\{g(x)\} \text {. }
\end{aligned}
$$

Parseval's identity for Fourier Transforms

If $F(s)$ is the $F . T$ of $f(x)$, then

Proof:
By convolution theorem, we have

$$
\mathrm{F}\{\mathrm{f}(\mathrm{x}) * \mathrm{~g}(\mathrm{x})\}=\mathrm{F}(\mathrm{~s}) \cdot \mathrm{G}(\mathrm{~s}) .
$$

Therefore, $\left(f^{*} g\right)(x)=F^{-1}\{F(s) \cdot G(s)\}$.

(by using the inversion formula)
Putting $x=0$ in (1), we get

$$
\begin{gather*}
\infty \\
\int f(t) \cdot g(-t) \cdot d t=\int_{F(s)}^{\infty} \cdot G(s) \cdot d s .
\end{gather*}
$$

Since (2) is true for all $g(t)$, take $g(t)=f(-t)$ and hence $g(-t)=f(t)$
Also, $\mathrm{G}(\mathrm{s})=\mathrm{F}\{\mathrm{g}(\mathrm{t}) \mathrm{\}}$

$$
\begin{aligned}
& =F\{f(-t)\} \\
& =\overline{F(s)}--\cdots-\cdots-\cdots(4) \text { (by the property of F.T). }
\end{aligned}
$$

Using (3) \& (4) in (2), we have

$$
\Rightarrow \int_{-\infty}|\mathrm{f}(\mathrm{t})|^{2} \mathrm{dt}=\int_{-\infty}|\mathrm{F}(\mathrm{~s})|^{2} \mathrm{ds}
$$

Example 6

Find the F.T of $f(x)=1-|x|$ for $|x|<1$.

$$
=0 \quad \text { for }|x|>1
$$

and hence find the value $\int \sin ^{4} t d t$.

$$
=-\int_{\sqrt{ } 2 \pi-1} \int(1-|x|) \operatorname{coss} x d x .+\int_{\sqrt{2} \pi-1} \int(1-|x|) \sin s x d x
$$

11
$=\frac{}{\sqrt{2} \pi} \quad 0^{2 \int(1-x) \cos s x d x \text {. by the property of definite integral. }}$
$=\sqrt{ }(2 / \pi) \int^{1}(1-x) d 0\left(\frac{\sin s x}{s}\right)$
$\left.\left.=\sqrt{ }(2 / \pi) \quad(1-x)\left(\frac{\sin s x}{s}\right)-(-1)-\frac{\cos s x}{s^{2}}\right)\right\}_{0}^{1}$
$(1-\cos s$

Using Parseval"s identity, we get

$$
2 \infty
$$

$\int_{\pi-\infty} \frac{(1-\cos s)^{2} d s}{s^{4}}=\int(1-|x|)^{2} d x$.

Setting $s / 2=x$, we get

$$
\text { (0) } 2 \mathrm{c}-7 \int_{0}^{\Rightarrow} \frac{x^{4}}{d x .}=\pi / 3 .
$$

Example 7

Find the F.T of $f(x)$ if

$$
f(x)=\begin{array}{ll}
1 & \text { for }|x|<a \\
0 & \text { for }|x|>a>0 .
\end{array}
$$

Using Parseval"s identity, prove $\int_{0}^{\infty}\left(\frac{\operatorname{sint}}{\mathrm{t}}\right)^{2} \mathrm{dt} .=\pi / 2$.

$$
\begin{aligned}
& \\
& (2 / \pi) \\
& \int_{-\infty}^{\infty}\left(\frac{\operatorname{sint}}{(t / a)}\right)^{2} d t / a=2 a \\
\text { i.e., } & \int_{-\infty}^{\infty}\left(\frac{\operatorname{sint}}{t}\right)^{2} d t=\pi \\
\Rightarrow \quad & 2 \int_{0}^{\infty}\left(\frac{\operatorname{sint}}{t}\right)^{2} d t=\pi \\
& \\
& \int_{0}^{\infty}\left(\frac{\sin t}{t}\right)^{2} d t=\pi / 2
\end{aligned}
$$

