
UNIT IV XML DATABASES 9

Structured, Semi structured, and Unstructured Data – XML Hierarchical Data

Model – XML Documents – Document Type Definition – XML Schema – XML

Documents and Databases – XML Querying – XPath – XQuery

XPath:

XPath is an important and core component of the XSLT standard. It is used to

traverse the elements and attributes in an XML document. XPath is a W3C

recommendation. XPath provides different types of expressions to retrieve relevant

information from the XML document. It is syntax for defining parts of an XML document.

Important features of XPath:

XPath defines structure: XPath is used to define the parts of an XML document i.e.

element, attributes, text, namespace, processing-instruction, comment, and document

nodes. XPath provides path expression: XPath provides powerful path expressions, select

nodes, or list of nodes in XML documents.

XPath is a core component of XSLT: XPath is a major element in XSLT standard

and must be followed to work with XSLT documents.

XPath is a standard function: XPath provides a rich library of standard functions to

manipulate string values, numeric values, date and time comparison, node and QName

manipulation, sequence manipulation, Boolean values etc. Path is W3C recommendation.

XPath Expression

XPath defines a pattern or path expression to select nodes or node sets in an XML

document. These patterns are used by XSLT to perform transformations. The path

expressions look very similar to the general expressions we used in the traditional file

system. XPath specifies seven types of nodes that can be output of the execution of the

XPath expression.

● Root

● Element

● Text

● Attribute

● Comment

● Processing Instruction

● Namespace

We know that XPath uses a path expression to select nodes or a list of nodes from

an XML document. A list of useful paths and expression to select any node/ list of nodes

from an XML document:

XPath Expression Example

Let's take an example to see the usage of XPath expressions. Here, we use an xml

file "employee.xml" and a stylesheet for that xml file named "employee.xsl". The XSL file

uses the XPath expressions under the select attribute of various XSL tags to fetch values

of id, firstname, lastname, nickname and salary of each employee node.

Employee.xml

<?xml version = "1.0"?>

<?xml-stylesheet type = "text/xsl" href = "employee.xsl"?>

<class>

<employee id = "001">

<firstname>Aryan</firstname>

<lastname>Gupta</lastname>

<nickname>Raju</nickname>

<salary>30000</salary>

</employee>

<employee id = "024">

<firstname>Sara</firstname>

<lastname>Khan</lastname>

<nickname>Zoya</nickname>

<salary>25000</salary>

</employee>

<employee id = "056">

<firstname>Peter</firstname>

<lastname>Symon</lastname>

<nickname>John</nickname>

<salary>10000</salary>

</employee>

</class>

Employee.xsl

<?xml version = "1.0" encoding = "UTF-8"?>

<xsl:stylesheet version = "1.0">

xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">

<xsl:template match = "/">

<html>

<body>

<h2> Employees</h2>

<table border = "1>

<tr bgcolor = "pink">

<th> ID</th>

<th> First Name</th>

<th> Last Name</th>

<th> Nick Name</th>

<th> Salary</th>

</tr>

<xsl:for-each select = "class/employee">

<tr>

<td> <xsl:value-of select = "@id"/> </td>

<td> <xsl:value-of select = "firstname"/> </td>

<td> <xsl:value-of select = "lastname"/> </td>

<td> <xsl:value-of select = "nickname"/> </td>

<td> <xsl:value-of select = "salary"/> </td>

</tr>

</xsl:for-each>

</table>

</body>

</html>

</xsl:template>

</xsl:stylesheet>

XQuery:

XQuery is a functional query language used to retrieve information stored in XML

format. It is the same as for XML what SQL is for databases. It was designed to query

XML data. XQuery is built on XPath expressions. It is a W3C recommendation which is

supported by all major databases.

What does it do

XQuery is a functional language which is responsible for finding and extracting

elements and attributes from XML documents. It can be used for following things:

● To extract information to use in a web service.

● To generate summary reports.

● To transform XML data to XHTML.

XQuery Features:

There are many features of XQuery query language. A list of top features are given

below:

● XQuery is a functional language. It is used to retrieve and query XML based data.

● XQuery is an expression-oriented programming language with a simple type

system.

● XQuery is analogous to SQL. For example: SQL is a query language for databases,

same as XQuery is a query language for XML.

● XQuery is XPath based and uses XPath expressions to navigate through XML

documents.

● XQuery is a W3C standard and universally supported by all major databases.

Advantages of XQuery:

XQuery can be used to retrieve both hierarchal and tabular data.

XQuery can also be used to query tree and graphical structures.

XQuery can be used to build web pages.

XQuery can be used to query web pages.

XQuery is best for XML-based databases and object-based databases. Object databases are

much more flexible and powerful than purely tabular databases.

XQuery can be used to transform XML documents into XHTML documents.

XQuery Environment Setup

Let's see how to create a local development environment. Here we are using the jar

file of the Saxon XQuery processor. The Java-based Saxon XQuery processor is used to

test the ".xqy" file, a file containing XQuery expression against our sample XML

document. You need to load Saxon XQuery processor jar files to run the java application.

For the eclipse project, add build-path to these jar files. Or, if you are running java using

command prompt, you need to set classpath to these jar files or put these jar files inside the

JRE/lib/ext directory.

How to Set CLASSPATH in Windows Using Command Prompt

Type the following command in your Command Prompt and press enter.

1.set CLASSPATH=%CLASSPATH%;C:\Program Files\Java\jre1.8\rt.jar;

XQuery First Example

Here, the XML document is named as courses.xml and xqy file is named as

courses.xqy

courses.xml

<?xml version="1.0" encoding="UTF-8"?>

<courses>

<course category="JAVA">

<title lang="en">Learn Java in 3 Months.</title>

<trainer>Sonoo Jaiswal</trainer>

<year>2008</year>

<fees>10000.00</fees>

</course>

<course category="Dot Net">

<title lang="en">Learn Dot Net in 3 Months.</title>

<trainer>Vicky Kaushal</trainer>

<year>2008</year>

<fees>10000.00</fees>

</course>

<course category="C">

<title lang="en">Learn C in 2 Months.</title>

<trainer>Ramesh Kumar</trainer>

<year>2014</year>

<fees>3000.00</fees>

</course>

<course category="XML">

<title lang="en">Learn XML in 2 Months.</title>

<trainer>Ajeet Kumar</trainer>

<year>2015</year>

<fees>4000.00</fees>

</course>

</courses>

courses.xqy

for $x in doc("courses.xml")/courses/course

where $x/fees>5000

return $x/title

This example will display the title elements of the courses whose fees are greater

than 5000.

Create a Java based XQuery executor program to read the courses.xqy, pass it to the

XQuery expression processor, and execute the expression. After that the result will be

displayed.

XQueryTester.java

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.InputStream;

import javax.xml.xquery.XQConnection;

import javax.xml.xquery.XQDataSource;

import javax.xml.xquery.XQException;

import javax.xml.xquery.XQPreparedExpression;

import javax.xml.xquery.XQResultSequence;

import com.saxonica.xqj.SaxonXQDataSource;

public class XQueryTester

{

public static void main(String[] args)

{

try

{

execute();

}

catch (FileNotFoundException e)

{

e.printStackTrace();

}

catch (XQException e)

{

e.printStackTrace();

}

}

private static void execute() throws FileNotFoundException, XQException

{

InputStream inputStream = new FileInputStream(new File("courses.xqy"));

XQDataSource ds = new SaxonXQDataSource();

XQConnection conn = ds.getConnection();

XQPreparedExpression exp = conn.prepareExpression(inputStream);

XQResultSequence result = exp.executeQuery();

while (result.next())

{

System.out.println(result.getItemAsString(null));

}

}

}

Execute XQuery against XML

● Put the above three files to a same location. We put them on desktop in a folder name

XQuery2.

● Compile XQueryTester.java using console. You must have JDK 1.5 or later installed

on your computer and classpaths are configured.

Compile:

javac XQueryTester.java

Execute:

javaXQueryTester

XQuery FLWOR

FLWOR is an acronym which stands for "For, Let, Where, Order by, Return".

● For - It is used to select a sequence of nodes.

● Let - It is used to bind a sequence to a variable.

● Where - It is used to filter the nodes.

● Order by - It is used to sort the nodes.

● Return - It is used to specify what to return (gets evaluated once for every node).

XQuery FLWOR Example

Following is a sample XML document that contains information on a collection of

books. We will use a FLWOR expression to retrieve the titles of those books with a price

greater than 30.

books.xml

<?xml version="1.0" encoding="UTF-8"?>

<books>

<book category="JAVA">

<title lang="en">Learn Java in 24 Hours</title>

<author>Robert</author>

<year>2005</year>

<price>30.00</price>

</book>

<book category="DOTNET">

<title lang="en">Learn .Net in 24 hours</title>

<author>Peter</author>

<year>2011</year>

<price>70.50</price>

</book>

<book category="XML">

<title lang="en">Learn XQuery in 24 hours</title>

<author>Robert</author>

<author>Peter</author>

<year>2013</year>

<price>50.00</price>

</book>

<book category="XML">

<title lang="en">Learn XPath in 24 hours</title>

<author>Jay Ban</author>

<year>2010</year>

<price>16.50</price>

</book>

</books>

The following Xquery document contains the query expression to be executed on

the above XML document.

books.xqy

let $books := (doc("books.xml")/books/book)

return <results>

{

for $x in $books

where $x/price>30

order by $x/price

return $x/title

}</results>

Result

<title lang="en">Learn XQuery in 24 hours</title>

<title lang="en">Learn .Net in 24 hours</title>

Let's take an XML document having the information on the collection of courses.

We will use a FLWOR expression to retrieve the titles of those courses whose fees are

greater than 2000.

courses.xml

<?xml version="1.0" encoding="UTF-8"?>

<courses>

<course category="JAVA">

<title lang="en">Learn Java in 3 Months.</title>

<trainer>Sonoo Jaiswal</trainer>

<year>2008</year>

<fees>10000.00</fees>

</course>

<course category="Dot Net">

<title lang="en">Learn Dot Net in 3 Months.</title>

<trainer>Vicky Kaushal</trainer>

<year>2008</year>

<fees>10000.00</fees>

</course>

<course category="C">

<title lang="en">Learn C in 2 Months.</title>

<trainer>Ramesh Kumar</trainer>

<year>2014</year>

<fees>3000.00</fees>

</course>

<course category="XML">

<title lang="en">Learn XML in 2 Months.</title>

<trainer>Ajeet Kumar</trainer>

<year>2015</year>

<fees>4000.00</fees>

</course>

</courses>

Let's take the Xquery document named "courses.xqy" that contains the query

expression to be executed on the above XML document.

courses.xqy

let $courses := (doc("courses.xml")/courses/course)

return <results>

{

for $x in $courses

where $x/fees>2000

order by $x/fees

return $x/title

}

</results>

Create a Java based XQuery executor program to read the courses.xqy, pass it to the

XQuery expression processor, and execute the expression. After that the result will be

displayed.

XQueryTester.java

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.InputStream;

import javax.xml.xquery.XQConnection;

import javax.xml.xquery.XQDataSource;

import javax.xml.xquery.XQException;

import javax.xml.xquery.XQPreparedExpression;

import javax.xml.xquery.XQResultSequence;

import com.saxonica.xqj.SaxonXQDataSource;

public class XQueryTester

{

public static void main(String[] args)

{

try

{

execute();

}

catch (FileNotFoundException e)

{

e.printStackTrace();

}

catch (XQException e)

{

e.printStackTrace();

}

}

private static void execute() throws FileNotFoundException, XQException

{

InputStream inputStream = new FileInputStream(new File("courses.xqy"));

XQDataSource ds = new SaxonXQDataSource();

XQConnection conn = ds.getConnection();

XQPreparedExpression exp = conn.prepareExpression(inputStream);

XQResultSequence result = exp.executeQuery();

while (result.next())

{

System.out.println(result.getItemAsString(null));

}

}

}

XQuery XPath Example

Let's take an XML document having the information on the collection of courses.

We will use XQuery expressions to retrieve the titles of those courses.

courses.xml

<?xml version="1.0" encoding="UTF-8"?>

<courses>

<course category="JAVA">

<title lang="en">Learn Java in 3 Months.</title>

<trainer>Sonoo Jaiswal</trainer>

<year>2008</year>

<fees>10000.00</fees>

</course>

<course category="Dot Net">

<title lang="en">Learn Dot Net in 3 Months.</title>

<trainer>Vicky Kaushal</trainer>

<year>2008</year>

<fees>10000.00</fees>

</course>

<course category="C">

<title lang="en">Learn C in 2 Months.</title>

<trainer>Ramesh Kumar</trainer>

<year>2014</year>

<fees>3000.00</fees>

</course>

<course category="XML">

<title lang="en">Learn XML in 2 Months.</title>

<trainer>Ajeet Kumar</trainer>

<year>2015</year>

<fees>4000.00</fees>

</course>

</courses>

courses.xqy

(: read the entire xml document :)

let $courses := doc("courses.xml")

for $x in $courses/courses/course

where $x/fees > 2000

return $x/title

Here, we use three different types of XQuery statements that will display the same

result having fees greater than 2000.

Execute XQuery against XML

● Put the above three files to the same location. We put them on the desktop in a folder

named XQuery3.

● Compile XQueryTester.java using the console. You must have JDK 1.5 or later

installed on your computer and classpaths are configured.

XQuery vs XPath:

Sl.No XQuery XPath

 XQuery is a functional programming

and query language that is used to

query a group of XML

data.

XPath is a xml path language that is

used to select nodes from an xml

document using queries

 XQuery is used to extract and

manipulate data from either xml

documents or relational databases

and ms office documents that support

an xml data source.

XPath is used to compute values like

strings, numbers and boolean types

from other xml documents.

 XQuery is represented in the form of

a tree model with seven nodes,

namely processing instructions,

elements, document nodes, attributes,

namespaces, text nodes, and

comments

XPath is represented as tree structure,

navigate it by selecting different nodes

 XQuery supports XPath and extended

relational models

XPath is still a component of query

language

 XQuery language helps to create

syntax for new xml documents

XPath was created to define a common

syntax and behavior model for xpointer

and XSLT

