

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 1

AD3391-DATABASE DESIGN AND MANAGEMENT

COLUMN BASED MONGODB DATA MODEL AND CRUD OPERATIONS

MongoDB is not inherently a column-based database but a document-based NoSQL database.

However, you can simulate a column-oriented model by organizing documents and collections in

a way that resembles columnar storage, which is common in column-family databases like Apache

Cassandra.

Below, we’ll discuss how to adapt a column-based model conceptually within MongoDB,

followed by CRUD operations.

1. Column-Based Data Modeling in MongoDB

In a columnar database, data is stored in columns rather than rows, allowing for efficient read/write

operations for analytical workloads. In MongoDB, you can emulate this behavior by:

A. Schema Design for Column-Oriented Storage

 Use collections to represent tables.
 Store columns as individual fields in a document.
 For sparse datasets, use null values or omit fields entirely (MongoDB handles sparse data

efficiently).

Example:

Imagine a "sales" dataset where each column (e.g., product, date, revenue, region) is a field in

the document.

json

Copy code

{

 "_id": "txn001",

 "product": "Laptop",

 "date": "2025-01-10",

 "revenue": 1200,

 "region": "North America"

}

B. Storing Wide-Column Data

For wide-column storage, use nested documents or array structures to represent column families.

json

Copy code

{

 "_id": "txn002",

 "product": "Phone",

 "details": {

 "date": "2025-01-12",

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 2

AD3391-DATABASE DESIGN AND MANAGEMENT

 "region": "Europe"

 },

 "metrics": {

 "revenue": 800,

 "units_sold": 50

 }

}

2. CRUD Operations in a Column-Based MongoDB Model

A. Create

 Insert documents with fields representing columns.
 Command: insertOne() or insertMany()
 Example:

javascript

Copy code

db.sales.insertOne({

 product: "Tablet",

 date: "2025-01-13",

 revenue: 500,

 region: "Asia"

});

B. Read

 Query specific columns (fields) or all columns (entire document).
 Command: find() or findOne()
 Example:

javascript

Copy code

// Retrieve all columns for all rows

db.sales.find();

// Retrieve specific columns

db.sales.find({}, { product: 1, revenue: 1, _id: 0 });

// Filter by column value

db.sales.find({ region: "Europe" });

C. Update

 Modify specific columns (fields) in a document.
 Command: updateOne() or updateMany()
 Example:

javascript

Copy code

// Update the revenue of a single transaction

db.sales.updateOne(

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 3

AD3391-DATABASE DESIGN AND MANAGEMENT

 { product: "Laptop" },

 { $set: { revenue: 1300 } }

);

// Add a new column (field) to multiple documents

db.sales.updateMany(

 { region: "North America" },

 { $set: { discount: 0.1 } }

);

D. Delete

 Remove rows (documents) or clear specific columns (fields).
 Command: deleteOne() or deleteMany()
 Example:

javascript

Copy code

// Delete a specific row

db.sales.deleteOne({ product: "Tablet" });

// Remove a specific column from all rows

db.sales.updateMany({}, { $unset: { discount: "" } });

3. Use Cases for Columnar-Like Models in MongoDB

Column-based modeling in MongoDB can be useful for:

1. Analytics Workloads: Storing metrics or time-series data for quick aggregation.
2. Sparse Datasets: Storing only relevant fields for specific records.
3. Dynamic Schema Requirements: Where fields may vary between records.

4. Limitations and Considerations

1. Not True Columnar Storage: MongoDB stores documents row-by-row internally, so it lacks the
performance optimizations of true columnar databases for large-scale analytical queries.

2. Indexing: Use indexes on frequently queried columns to optimize performance.
3. Aggregation Framework: MongoDB’s powerful aggregation framework can be used to simulate

columnar-like querying.

