AD3351 | DESIGN AND ANALYSIS OF ALGORITHMS

NP HARD AND NP COMPLETE PROBLEM

NP Problem:

The NP problems set of problems whose solutions are hard to find but easy to verify and are solved by Non-Deterministic Machine in polynomial time.

NP-Hard Problem:

A Problem X is NP-Hard if there is an NP-Complete problem Y, such that Y is reducible to X in polynomial time. NP-Hard problems are as hard as NP-Complete problems. NP-Hard Problem need not be in NP class.

If every problem of NP can be polynomial time reduced to it called as NP Hard.

A lot of times takes the particular problem solve and reducing different problems.

example:

- 1. Hamiltonian cycle.
- 2. optimization problem.
- 3. Shortest path

NP-Complete Problem:

A problem X is NP-Complete if there is an NP problem Y, such that Y is reducible to X in polynomial time. NP-Complete problems are as hard as NP problems. A problem is NP-Complete if it is a part of both NP and NP-Hard Problem. A non-deterministic Turing machine can solve NP-Complete problem in polynomial time.

A problem is np-complete when it is both np and np hard combines together. this

means np complete problems can be verified in polynomial time.

Example:

- 1. Decision problems.
- 2. Regular graphs.

Difference between NP-Hard and NP-Complete:

AD3351 | DESIGN AND ANALYSIS OF ALGORITHMS

NP-hard	NP-Complete
NP-Hard problems(say X) can be solved if and only if there is a NP-Complete problem(say Y) that can be reducible into X in polynomial time.	NP-Complete problems can be solved by a non-deterministic Algorithm/Turing Machine in polynomial time.
To solve this problem, it do not have to be in NP.	To solve this problem, it must be both NP and NP-hard problems.
Time is unknown in NP-Hard.	Time is known as it is fixed in NP-Hard.
NP-hard is not a decision problem.	NP-Complete is exclusively a decision problem.
Not all NP-hard problems are NP-complete.	All NP-complete problems are NP-hard
Do not have to be a Decision problem.	It is exclusively a Decision problem.
It is optimization problem used.	It is Decision problem used.
Example: Halting problem, Vertex cover problem, etc.	Example: Determine whether a graph has a Hamiltonian cycle, Determine whether a Boolean formula is satisfiable or not, Circuit-satisfiability problem, etc.