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5.13. INTRODUCTION OF THICK CYLINDER 

 In the last chapter, we have mentioned that if the ratio of thickness to internal 

diameter of a cylindrical shell is less than about 1/20,the cylinder shell is know as thin 

cylinders. For them it may be assumed with reasonable accuracy that the hoop and 

longitudinal stresses are constant over the thickness and the radial stress is small and 

can be neglected. If the ratio of thickness to internal diameter is more than 1/20,then 

cylinder shell is know as thick cylinders. 

 The hoop stress in case of a thick cylinder will not be uniform across the 

thickness. Actually the hoop stress will vary from a maximum value at the inner 

circumference to a minimum value at the outer circumference. 

5.14. STRESSES IN A THICK CYLINDERICAL SHELL 

Fig. shows a thick cylinder subjected to an internal fluid pressure. 

 

Let r2 = External radius of the cylinder, 

       r1 = Internal radius of the cylinder, and 

        L = Length of cylinder. 

Consider an elementary ring of the cylinder of radius x and thickness dx as shown in 

the figure 

 

Let   𝑝𝑥 = Radial pressure on the inner surface 

of the ring 

𝑝𝑥 + d𝑝𝑥 = Radial pressure on the outer surface 

of the ring 

 𝜎x = Hoop stress induced in the ring. 

 

Take a longitudinal section x-x and consider the equilibrium of half of the ring of figure. 
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Bursting force 

=𝑝𝑥 ( 2xL) – (𝑝𝑥+ d𝑝𝑥) × 2(x + dx ). L 

= 2L [𝑝𝑥. x – (𝑝𝑥.x + 𝑝𝑥.dx + x . d𝑝𝑥  + d𝑝𝑥. dx ) ] 

=2L [ - 𝑝𝑥.dx - x . d𝑝𝑥  ] 

= - 2L (𝑝𝑥.dx + x . d𝑝𝑥 )       …. (1) 

Resisting force = Hoop stress × Area on which it acts = 𝜎𝑥 × 2dx.L …. (2) 

Equating the resisting force to the bursting force, we get 

𝜎𝑥 × 2dx.L  =   - 2L (𝑝𝑥.dx + x . 𝑑𝑝𝑥 )  

Or           𝜎𝑥 =  −𝑝𝑥 − 𝑥 
𝑑𝑝𝑥

𝑑𝑥
      …. (3) 

 The longitudinal strain at any point in the section is constant and is independent 

of the radius. This mean that cross- sections remain plane after straining and this is true 

for sections, remote from any end fixing. As longitudinal strain is constant, hence 

longitudinal stress will also be constant. 

Let  𝜎2 = Longitudinal stress. 

Hence at any point at a distance x from the centre, three principle stresses are acting : 

They are : 

1. the radial compressive stress, 𝑝𝑥 

2. the hoop ( or circumferential ) tensile stress, 𝜎𝑥 

3. the longitudinal tensile strain 𝜎2. 

The longitudinal strain ( 𝑒2 ) at this point is given by, 
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   𝑒2 =   
𝜎2

𝐸
−  

𝜇𝜎𝑥

𝐸
+  

𝜇𝑝𝑥

𝐸
= constant 

But longitudinal strain is constant 

    
𝜎2

𝐸
− 

𝜇𝜎𝑥

𝐸
+  

𝜇𝑝𝑥

𝐸
= constant 

But 𝜎2 is also constant, and for the material of the cylinder E and 𝜇 are constant. 

 𝜎𝑥 −  𝑝𝑥 = constant 

      = 2a where a is constant 

 𝜎𝑥 =  𝑝𝑥 + 2𝑎        …. (4) 

Equating the two values of  𝜎𝑥 given by equation (3) and (4), we get 

  𝑝𝑥 + 2𝑎 =  −𝑝𝑥 − 𝑥 
𝑑𝑝𝑥

𝑑𝑥
 

   𝑥 
𝑑𝑝𝑥

𝑑𝑥
=  −𝑝𝑥 −  𝑝𝑥 − 2𝑎 =  −2𝑝𝑥 − 2𝑎 

   
𝑑𝑝𝑥

𝑑𝑥
=  − 

2𝑝𝑥

𝑥
−

2𝑎

𝑥
=  

−2(𝑝𝑥+𝑎)

𝑥
 

  
𝑑𝑝𝑥

(𝑝𝑥+𝑎)
=  − 

2𝑑𝑥

𝑥
 

Integrating the above equation, we get 

  log𝑒(𝑝𝑥 + 𝑎 ) = − log𝑒 𝑥2 +  log𝑒 𝑏 

    =  log𝑒
𝑏

𝑥2
 

   𝑝𝑥 + 𝑎 =
𝑏

𝑥2
   

   𝑝𝑥 = 
𝑏

𝑥2
− 𝑎       …. (5.1) 

Substituting the values of  𝑝𝑥 in equation (4), we get 

   𝜎𝑥 =  
𝑏

𝑥2
− 𝑎 + 2𝑎 =

𝑏

𝑥2
+ 𝑎     …. ( 5.2) 

Equation ( 5.1) gives the radial pressure 𝑝𝑥 and equation (5.2) gives the hoop stress at 

any radius x. These two equations are called Lame’s equations. The constants ‘a’ and 

‘b’ are obtained from boundary conditions, which are : 

i. at x = r1, 𝑝𝑥 =  𝑝0 or the pressure of fluid inside the cylinder, and 

ii. at x = r2, 𝑝𝑥 = 0   or atmosphere pressure. 

After knowing the value of ‘a’ and ‘b’ , the hoop stress can be calculated at any radius 
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Problem 5.24: Determine the maximum and minimum hoop stress across the section 

of a pipe of 400 mm internal diameter and 100 mm thick, when the pipe contains a fluid 

at a pressure of 8 N/mm2. Also sketch the radial pressure distribution and hoop stress 

distribution across the section. 

Sol. Given: 

Internal dia,   = 400 mm 

Internal radius,          r1 = 
400

2
= 200 mm 

Thickness,   = 100 mm 

External dia,   = 400 +2 × 100 = 600 mm 

External radius,          r2 = 
600

2
 = 300 mm 

Fluid pressure,        𝑝0 = 8 N/mm2 

or              at x = r1, 𝑝𝑥 =  𝑝0 = 8 N/mm2 

The radial pressure (𝑝𝑥) is given by equation (18.1) as 

    𝑝𝑥 = 
𝑏

𝑥2
− 𝑎     …. (1) 

Now apply the boundary conditions to the above equation. The boundary conditions are 

:      At x = r1 = 200 mm , 𝑝𝑥 = 8 N/mm2 

1) At x = r2 = 300 mm , 𝑝𝑥 = 0 

Substituting these boundary conditions in equation (1), we get  

    8 = 
𝑏

2002
− 𝑎  = 

𝑏

40000
− 𝑎   …. (2) 

    0 = 
𝑏

3002
− 𝑎  = 

𝑏

90000
− 𝑎   …. (3) 

and  

Subtracting equation (3) from equation (2), we get 

    8 = 
𝑏

40000
−

𝑏

90000
 = 

9𝑏−4𝑏

360000
 = 

5𝑏

360000
 

    b = 
360000 ×8

5
 = 576000 

Substituting this value in equation (3), we get 

    0 = 
576000

90000
− 𝑎 or a = 

576000

9000
 = 6.4 

The values of ‘a’ and ‘b’ are substituted in the hoop stress. 
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Now hoop stress at any radius x is given by equation as 

    𝜎𝑥 =  
𝑏

𝑥2
+ 𝑎 = 

576000

𝑥2
+ 6.4 

At x = 200 mm, 𝜎200 = 
576000

2002
+ 6.4 = 14.4 + 6.4 = 20.8 N/mm2.Ans. 

At x = 300 mm, 𝜎300 = 
576000

3002
+ 6.4 = 6.4 + 6.4 = 12.8  N/mm2.Ans. 

Figure shows the radial pressure distribution and hoop stress distribution across 

the section. AB is taken a horizontal line. AC = 8 N/mm2 . The variation between B and 

C is parabolic. The curve BC shows  the variation of radial pressure across AB. 

The  curve DE which is also parabolic, shows the variation of hoop stress across AB. 

Values BD = 12.8 N/mm2. The radial pressure is compressive whereas the hoop stress 

is tensile. 

Problem 5.25: Find the thickness of metal necessary for a cylindrical shell of internal 

diameter 160 mm to withstand an internal pressure of 8 N/mm2. The maximum hoop 

stress in the section is not to exceed 35 N/mm2. 

Sol. Given : 

Internal dia,       = 160 mm 

Internal radius,           r1  = 
160

2
 = 80 mm 

Internal pressure,       = 8 N/mm2 

This means at x =80 mm,  𝑝𝑥= 8 N/mm2 
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Maximum hoop stress, 𝜎𝑥 = 35 N/mm2 

The maximum hoop stress is at the inner radius of the shell. 

Let       r2 = External radius. 

The radial pressure and hoop stress at any radius x are given by equation (18.1) and 

(18.2) as 

   𝑝𝑥 = 
𝑏

𝑥2
− 𝑎      …. (1) 

and   𝜎𝑥 =  
𝑏

𝑥2
+ 𝑎      …. (2) 

Let us now apply the boundary conditions. The boundary conditions are : 

At x = 80 mm, 𝑝𝑥 = 8 N/mm2 and 𝜎𝑥 = 35 N/mm2 

Substituting x = 80 mm  and  𝑝𝑥 = 8 N/mm2  in equation (1),we get 

   8 = 
𝑏

802
− 𝑎= 

𝑏

6400
− 𝑎    …. (3) 

Substituting x = 80 mm  and  𝜎𝑥 = 35 N/mm2 in equation (2),we get 

   35 = 
𝑏

802
 +  𝑎  = 

𝑏

6400
+ 𝑎    …. (4) 

Subtracting equation (3) from equation (4),we get  

 27 = 2a or  a = 
27

2
 = 13.5 

Substituting the value of a in equation (3),we get 

   8 = 
𝑏

6400
− 13.5 

    b = ( 8 + 13.5 ) × 6400 = 21.5 × 6400 

Substituting  the values of ‘a’ and ‘b’ in equation (1), 

   𝑝𝑥 = 
21.5 ×6400

𝑥2
− 13.5  

But at the outer surface, the pressure is zero. Hence at x = r2, 𝑝𝑥 = 0.Substituting these 

values in the above equation , we get 

   0 = 
21.5 ×6400

𝑟2
2 − 13.5 

   𝑟2
2 = 

21.5 ×6400

13.5
    or  r2 = √

21.5 ×6400

13.5
 = 100.96 mm 

Thickness of the shell, t = 𝑟2 −  𝑟1 

        = 100.96 – 80 = 20.96 mm.Ans. 
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5.15. STRESSES IN COMPOUND THICK CYLINDERS 

 From the problem, we find that the hoop stress is maximum at the inner radius 

and it decreases towards the outer radius. The hoop stress is tensile in nature and it is 

caused by the internal fluid pressure inside the cylinder. This maximum hoop stress at 

the inner radius is always greater than the internal fluid pressure. Hence the maximum 

fluid pressure inside the cylinder is limited corresponding to the condition that the hoop 

stress at the inner radius reaches the permissible value. In case of cylinders which have 

to carry high internal fluid pressure, some methods of reducing the hoop stress have to 

be devised. 

 One method is to wind* strong steel wire under tension on the cylinder. The 

effect of the wire is to put the cylinder wall under an initial compressive stress. 

 Another method is to shrink one cylinder over the other. Due to this , the inner 

cylinder will be put into initial compression whereas the outer cylinder will be put into 

initial tension. If now the compound cylinder is subjected to internal fluid pressure, both 

the inner and outer cylinders will be subjected to hoop tensile stress. The net effect of 

the Initial stresses due to shrinking and those due to internal fluid pressure is to make 

the resultant stresses more or less uniform. 

Figure shows a compound thick cylinder made up of  two cylinders. 

 

Let   r2 = Outer radius of compound cylinder 

 r1 = Inner radius of compound cylinder 

  r*= Radius at the junction of the two cylinders 

(i.e.., outer radius of inner cylinder or inner radius of 

outer 

cylinder) 

 p* = Radial pressure at the junction of the two cylinders. 

 Let us now apply Lame’s equation for the initial conditions ( i.e., after shrinking 

the outer cylinderover the inner cylinder and fluid under pressure is not admitted into 

the inner cylinder). 

1) For outer cylinder  
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        The Lame’s equation at a radius x for outer cylinder are given by  

   𝑝𝑥 = 
𝑏1

𝑥2
− a1             …. (1)         𝜎𝑥 =  

𝑏1

𝑥2
+ 𝑎1…. (2) 

where a1,b1 are constants for outer cylinder. 

At x = r2, 𝑝𝑥 = 0. And at x = r*, 𝑝𝑥 = 𝑝 ∗ 

Substituting these conditions in equation (1), we get  

  0 = 
𝑏1

𝑟2
2 − a1             …. (3)  p* = 

𝑏1

r∗2
+ 𝑎1 …. (4) 

From equation (3) and (4), the constants a1 and b1 can be determined. These 

values are substituted in equation (2). And then hoop stresses in the outer cylinder due 

to shrinking can be obtained. 

2) For inner cylinder  

 The Lame’s equations for inner cylinder at a radius x are given by 

   𝑝𝑥 = 
𝑏2

𝑥2
− a2  , 𝜎𝑥 =  

𝑏2

𝑥2
+ 𝑎2  

Where a2, b2 are constants for inner cylinder. 

 At x = r1, 𝑝𝑥 = 0 as fluid under pressure is not admitted into the inner cylinder. 

And at x = r* , 𝑝𝑥 = 𝑝 ∗ . 

Substituting these values in the above value of 𝑝𝑥, we get 

   0 = 
𝑏2

𝑥2
− a2        …. (5)     and  p* = 

𝑏2

r∗2
+ 𝑎2 …. (6) 

From equation (5) and (6) , the constants a2 and b2 can be determined. These values are 

substituted in 𝜎𝑥. And then hoop stresses are obtained. 

Hoop stresses in compound cylinder due to internal fluid pressure alone  

 When the fluid under pressure is admitted into the compound cylinder, the hoop 

stresses are set in the compound cylinder. To find these stresses, the inner cylinder and 

outer cylinder will together be considered as one thick shell, Let p = internal fluid 

pressure. Now the Lame’s equations are applied, which are given by 

   𝑝𝑥 =
𝐵

𝑥2
− A  …. (7) and      𝜎𝑥 =  

𝐵

𝑥2
+ 𝐴        …. (8) 

where A and B are constants for single thick shell due to internal fluid pressure. 

At     x = r2, 𝑝𝑥 = 0. 

Substituting these values in equation (7), we get 

     0 = 
𝐵

𝑟2
2 − A       …. (9) 
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At     x = r1, 𝑝𝑥 = 𝑝. 

Substituting these values in equation (7), we get 

     p = 
𝐵

𝑟1
2 − A        …. (10) 

From equation (9) and (10), the constants A and B can be determined. These 

values are substituted in equation (8). And then hoop stresses across the section can be 

obtained. 

The resultant hoop stresses will be the algebraic sum of the hoop stresses caused 

due to shrinking and those due to internal fluid pressure. 

Problem 5.26: A compound cylinder is made by shrinking a cylinder of external 

diameter 300 mm and internal diameter of 250 mm over another cylinder of external 

diameter 250 mm and internal diameter 200 mm. The radial pressure at the junction 

after shrinking is 8 N/mm2. Find the final stresses set up across the section, when the 

compound cylinder is subjected to an internal fluid pressure of 84.5 N/mm2. 

Sol. Given : 

For outer cylinder : 

External diameter   = 300 mm 

External radius ,          r2 = 
300

2
 = 150 mm 

Internal diameter,  = 250 mm 

Radius at the junction,      r* = 
250

2
= 125 mm 

For inner cylinder : 

Internal diameter,  = 200 mm 

Internal radius,          r1 = 
200

2
 = 100 mm 

Radial pressure due to shrinking at the junction, 

             P* = 8 N/mm2 

Fluid pressure in the  compound cylinder, p = 84.5 N/mm2. 

i. Stresses due to shrinking in the outer and inner cylinders before the fluid pressure 

is admitted. 

(a)  Lame’s equations for outer cylinders are : 
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𝑝𝑥 = 
𝑏1

𝑥2
− a1             …. (1)    and    𝜎𝑥 =  

𝑏1

𝑥2
+ 𝑎1          …. 

(2) 

At    x = 150 mm, 𝑝𝑥 = 0. 

Substituting these values in equation (1), 

   0 = 
𝑏1

1502
− a1 = 

𝑏1

22500
− a1            …. (3) 

At    x = r* = 125 mm, 𝑝𝑥 = 𝑝 ∗ =  8 N/mm2. 

Substituting these values in equation (1), we get 

   8 =  
𝑏1

1252
− a1= 

𝑏1

15625
− a1             …. (4)    

Subtracting equation (3) from equation (4), we get 

   8 =  −
𝑏1

22500
+  

𝑏1

15625
= 

(−15625+22500)𝑏1

22500 ×15625
 

   b1 = 
8 × 22500 ×15625

(−15625 + 22500)
 = 409090.9 

Substituting the value of b1 in equation (3), we get  

   0 = 
409090.9

22500
− a1       or   a1 = 

409090.9

22500
 = 18.18 

Substituting the value of a1 and  b1  in equation (2), we get  

   𝜎𝑥 =  
409090.9

𝑥2
+ 18.18 

The above equation gives the hoop stress in the outer cylinder due to shrinking. The 

hoop stress at the outer and inner surface of the outer cylinder is obtained by substituting 

x = 150 mm and x = 125 mm respectively in the above equation. 

   𝜎150 =  
409090.9

1502
+ 18.18 = 36.36 N/mm2 (tensile) 

and    𝜎125 =  
409090.9

1252
+ 18.18 = 44.36 N/mm2 (tensile). 

(b) Lame’s equation for the inner cylinder are : 

𝑝𝑥 = 
𝑏2

𝑥2
− a2  …. (5)  and   𝜎𝑥 =  

𝑏2

𝑥2
+ 𝑎2     …. (6) 

At x = r1 = 100 mm , 𝑝𝑥 = 0 ( There is no fluid under pressure.) 

Substituting these values in equation (5), we get 

   0 = 
𝑏2

1002
− a2 = 

𝑏2

10000
− a2     …. (7) 
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At x = r* =125 mm, 𝑝𝑥 =   P* = 8 N/mm2. Substituting these values in equation (5), we 

get  

   8 = 
𝑏2

1252
− a2 = 

𝑏2

15625
− a2        …. (8) 

Subtracting equation (7) from equation (8), we get 

   8 = 
𝑏2

15625
−  

𝑏2

10000
 

       =
𝑏2(10000−15625)

15625 ×10000
  = 

− 5625 𝑏2

15625 ×10000
 

   b2 = −
8 ×15625 ×10000

5625
  = − 222222.2 

Substituting the value of b2 in equation (8), we get 

   0 = −
222222.2

10000
− a2 

   a2 = − 22.22 

Substituting the values of a2 and b2 in equation (7), we get 

   𝜎𝑥= −
222222.2

𝑥2
− 22.22 

Hence the hoop stress for the inner cylinder is obtained by substituting x = 125 mm 

respectively in the above equation. 

   𝜎125 = −
222222.2

1252
− 22.22 

            = − 14.22 – 22.22 =  −36.44 N/mm2 ( Compressive) 

and    𝜎100 = −
222222.2

1002
− 22.22 

            = − 22.22 − 22.22 = − 44.44 N/mm2 (Compressive) 

ii. Stresses due to fluid pressure alone 

When the fluid under pressure is admitted inside the compound cylinder, the two 

cylinders together will be considered as one single unit. The hoop stresses are 

calculated by Lame’s equations, which are 

  𝑝𝑥 = 
𝐵

𝑥2
− A  …. (9) and      𝜎𝑥 =  

𝐵

𝑥2
+ 𝐴        …. (10) 

Where A and B are constants. 

At x = 100 mm , 𝑝𝑥 = p = 84.5 N/mm2. Substituting the values in equation (9),we get  

  84.5 = 
𝐵

1002
− A = 

𝐵

10000
− A       …. (11) 
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At x = 150 mm, 𝑝𝑥 = 0. Substituting the values in equation (9),we get 

  0 = 
𝐵

1502
− A = 

𝐵

22500
− A        …. (12) 

Subtracting equation (12) from equation (11), we get  

  84.5 = 
𝐵

10000
−  

𝐵

22500
 

           =  
𝐵(22500 −10000)

1000 ×22500
 = 

12500 × 𝐵

10000 × 22500
 

      B = 
84.5 ×10000 ×22500

12500
  = 1521000 

Substituting this  value  in equation (12), we get 

        0 = 
1521000

22500
− 𝐴  or A =

1521000

22500
= 67.6 

Substituting the values of A and B in equation (x), we get 

  𝜎𝑥 =  
1521000

𝑥2
+ 67.6 

Hence the hoop stresses due to internal fluid pressure alone are given by, 

  𝜎100 =  
1521000

1002
+ 67.6  = 219.7 N/mm2 (tensile) 

  𝜎125 =  
1521000

1252
+ 67.6 = 97.344 + 67.6 =  164.94 N/mm2 

  𝜎150 =  
1521000

1502
+ 67.6 = 67.6 + 67.6 = 135.2 N/mm2 

 The resultant stresses will be the algebraic sum of the initial stresses due to 

shrinking and those due to internal fluid pressure. 

Inner cylinder 

 F100 =   𝜎100 due to shrinkage + 𝜎100 due to internal fluid pressure  

          =   − 44.44 + 219.7 = 175.26 N/mm2 (tensile).   Ans. 

 F125 = 𝜎125 due to shrinkage + 𝜎125 due to internal fluid pressure 

          =  −36.44 + 164.94 = 128.5 N/mm2 (tensile).   Ans. 

Outer cylinder 

 F125 = 𝜎125 due to shrinkage + 𝜎125 due to internal fluid pressure 

          = 44.36 + 164.94 = 209.3 N/mm2 (tensile).   Ans. 

F150 = 𝜎150 due to shrinkage + 𝜎150 due to internal fluid pressure 

        =  36.36 + 135.2 = 171.56 N/mm2 (tensile).   Ans. 
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5.16. INITIAL DIFFERENCE IN RADII AT THE  JUNCTION OF A 

COMPOUND CYLINDER FOR SHRINKAGE 

 By shrinking the outer cylinder over the inner cylinder, some compressive 

stresses are produced in the inner cylinder . In order to shrink the outer cylinder over 

the inner cylinder, the inner diameter of the outer cylinder should be slightly less than 

the outer diameter of the inner cylinder. Now the outer cylinder shrinks over the inner 

cylinder. Thus inner cylinder is put into compression and outer cylinder is put into 

tension. After shrinking , the outer radius of inner cylinder decreases whereas the inner 

radius of outer cylinder increases from the initial values. 

Let  r2 = Outer radius of the outer cylinder 

 r1 = Inner radius of the inner cylinder 

 r* = Radius of junction after shrinking or it is common radius after shrinking 

 p* = Radial pressure at the junction after shrinking. 

 Before shrinking, the outer radius of the inner cylinder is slightly more than r* 

and inner   radius of the cylinder is slightly less than r*. 

For the outer and inner cylinder Lame’s equation are used. These equations are  

   𝑝𝑥 = 
𝑏

𝑥2
− 𝑎   and   𝜎𝑥 =  

𝑏

𝑥2
+ 𝑎  

The values of constants a and b will be different for each cylinder. 

Let the constants for inner cylinder be a2,b2 and for outer cylinder a1,b1. 

The radial pressure at the junction (i.e.,p*) is same for outer cylinder and inner cylinder. 

At the junction ,x = r* and 𝑝𝑥 = 𝑝 ∗. Hence radial pressure at the junction. 

   P* = p* =
𝑏1

r∗2
− 𝑎1 =  

𝑏2

r∗2
+ 𝑎1         …. (A) 

or   
𝑏1−𝑏2

𝑟∗2
   =  (a1−  a2)            …. (B) 

or   (b1 −b2) =𝑟 ∗2(a1−  a2)  

Now the hoop strain ( or circumferential strain ) in the cylinder at any point  

   = 
𝜎𝑥

𝐸
+

𝑝𝑥

𝑚𝐸
       …. (C) 

But circumferential strain  

   = 
𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐶𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒
 

   = 
2𝜋(𝑟+𝑑𝑟 )−2𝜋𝑟

2𝜋𝑟
=

𝑑𝑟

𝑟
     …. (D) 
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   = Radial strain 

 Hence equating the two values of circumferential strain given by equation (C ) 

and (D),we get  

  
𝑑𝑟

𝑟
 = 

𝜎𝑥

𝐸
+  

𝑝𝑥

𝑚𝐸
       …. (1) 

 On shrinking, at the junction there is extension in the inner radius of the outer 

cylinder and compression in the outer radius of the inner cylinder. 

At the junction where x = r*, increase in the inner radius of outer cylinder  

    = r* (
𝜎𝑥

𝐸
+  

𝑝𝑥

𝑚𝐸
)      …. (2) 

But for outer cylinder at the junction, we have  

  𝜎𝑥 =
𝑏1

𝑟∗2
 + a1 and  𝑝𝑥 =  

𝑏1

𝑟∗2
− a1  

Where a1 and b1 are constants for outer cylinders. 

Substituting the values of  𝜎𝑥 and 𝑝𝑥 in equation (2), we get  

Increase in the inner radius of outer cylinder 

   = r* [
1

𝐸
(𝜎𝑥 +

𝑝𝑥

𝑚
)] = r* [

1

𝐸
(

𝑏1

𝑟∗2
+ 𝑎1) +  

1

𝑚𝐸
(

𝑏1

𝑟∗2
− 𝑎1)] 

Similarly, decrease in the outer radius of the inner cylinder is obtained from equation 

(1) as 

   = −  r* (
𝜎𝑥

𝐸
+  

𝑝𝑥

𝑚𝐸
)  (−ve sign is due to decrease ) …. (3) 

But for inner cylinder at the junction , we have  

   𝜎𝑥 =
𝑏2

𝑟∗2
 + a2 and  𝑝𝑥 =  

𝑏2

𝑟∗2
– a2  

Substituting these values in equation (3), we get  

Decrease in the outer radius of inner cylinder 

    = −r* [
1

𝐸
(

𝑏2

𝑟∗2
+ 𝑎2) +  

1

𝑚𝐸
(

𝑏2

𝑟∗2
− 𝑎2)]          …. 

(4) 

But the original difference in the outer radius of the inner cylinder and inner radius of 

the outer  cylinder. 

   = Increase in inner radius of outer cylinder + Decrease in outer 

radius of the inner cylinder 
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  = r* [
1

𝐸
(

𝑏1

𝑟∗2
+ 𝑎1) +  

1

𝑚𝐸
(

𝑏1

𝑟∗2
− 𝑎1)] −r* [

1

𝐸
(

𝑏2

𝑟∗2
+ 𝑎2) +  

1

𝑚𝐸
(

𝑏2

𝑟∗2
− 𝑎2)]

  

= 
𝑟∗

𝐸
[(

𝑏1

𝑟∗2
+ 𝑎1) − (

𝑏2

𝑟∗2
+ 𝑎2)] + 

𝑟∗

𝑚𝐸
[(

𝑏1

𝑟∗2
− 𝑎1) − (

𝑏2

𝑟∗2
− 𝑎2)] 

But from equation (A), 

𝑏1

𝑟∗2
− 𝑎1 = 

𝑏2

𝑟∗2
− 𝑎2. 

Hence second part of the above equation is zero. Hence above equation becomes as  

Original difference of radii at the junction 

  = 
𝑟∗

𝐸
[(

𝑏1

𝑟∗2
+ 𝑎1) − (

𝑏2

𝑟∗2
+ 𝑎2)] 

  = 
𝑟∗

𝐸
[

(𝑏1−𝑏2)

𝑟∗2
+ ( 𝑎1 −  𝑎2)] 

  = 
𝑟∗

𝐸
[(𝑎1 − 𝑎2) + (𝑎1 − 𝑎2)] [𝐹𝑟𝑜𝑚 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (𝐵),

𝑏1−𝑏2

𝑟∗2
= 𝑎1 − 𝑎2] 

  = 
2𝑟∗

𝐸
(𝑎1 − 𝑎2)      …. (18.3) 

 The values of a1 and a2 are obtained from the given conditions. The value of a1  

is for outer cylinder whereas of  a2  is for inner cylinder. 

Problem 5.27: A steel cylinder of 300 mm external diameter is to be shrunk to another 

steel cylinder of 150 mm internal diameter. After shrinking, the diameter at the junction 

is 250 mm and radial pressure at the common junction is 28 N/mm2. Find the original 

difference in radii at the junction. Take E = 2 × 105 N/mm2. 

Sol. Given: 

External dia. of  outer cylinder  = 300 mm 

Radius,   r2 = 150 mm 

Internal dia. of inner cylinder     = 150 mm 

Radius,  r1 = 75 mm 

Diameter at the junction   = 250 mm 

 Radius,           r* = 125 mm 

Radial pressure at the junction,   p* = 28 N/mm2 

Value of E = 2 × 105 N/mm2 
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Using equation (18.3), we get 

Original difference of radii at the junction  

      = 
2𝑟∗

𝐸
(𝑎1 − 𝑎2)    …. (1) 

 First find the values of a1 and a2 from the given conditions. These are the 

constants for outer cylinder and inner cylinder respectively. They are obtained by using 

Lame’s equation. 

For outer cylinder  𝑝𝑥= 
𝑏1

𝑥2
− 𝑎1 

1) At junction, x = r* = 125 mm and 𝑝𝑥 = 𝑝 ∗ = 28  N/mm2 

2) At x =150 mm , 𝑝𝑥 = 0. 

Substituting these two conditions in the above equation, we get  

   28 =  
𝑏1

1252
− 𝑎1   =  

𝑏1

15625
− 𝑎1    …. (2) 

and    0 =  
𝑏1

1502
− 𝑎1   =  

𝑏1

22500
− 𝑎1    …. (3) 

Solving equation (2) and (3), we get  

   b1  = 1432000       and       a1 = 63.6. 

For inner cylinder  

   𝑝𝑥 = 
𝑏2

𝑥2
− 𝑎2 

1) At junction, x = r* = 125 mm and 𝑝𝑥 = 𝑝 ∗ = 28  N/mm2 

2) At x =75 mm , 𝑝𝑥 = 0. 

Substituting these two conditions in the above equation, we get 

   28 =  
𝑏1

1252
− 𝑎1   =  

𝑏1

15625
− 𝑎1    …. (4) 

and    0 =  
𝑏1

752
− 𝑎1   =  

𝑏1

5625
− 𝑎1    …. (5) 

Solving equation (4) and (5), we get  

   b2 = − 246100            and       a1 = − 43.75 

Now substituting the values of a2 and a1 in equation (1),we get 

Difference of radii at the junction  

         =  
2 ×125

2 × 105
[63.6 − (−43.75)] 

         =  
125

105
× 107.35  = 0.13 mm. Ans. 
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Problem 5.28: A steel tube of 200 mm external diameter is to be shrunk onto another 

steel tube of 60 mm internal diameter. The diameter at the junction after shrinking is 

120 mm. Before shrinking on , the difference of diameters at the junction is 0.08 mm. 

Calculate the radial pressure at the junction and the hoop stresses developed  in the two 

tubes after shrinking on. Take E as 2 × 105 N/mm2. 

Sol. Given : 

External dia. of outer tube  = 200 mm 

 Radius ,           r2 =  100 mm 

Internal dia. of inner tube  = 60 mm 

 Radius,          r1 = 30 mm  

The diameter at the junction after shrinking = 120 mm 

 Radius,            r*= 60 mm 

Before shrinking on, the difference of dia. at the junction = 0.08 mm 

 Difference of original radii = 0.04 mm 

Value of E = 2 × 105 N/mm2 

Let p* = Radial pressure at the junction  

Using equation (18.3), 

Original difference of radii at junction  

    =  
2𝑟∗

𝐸
(𝑎1 − 𝑎2) 

or        0.04 = 
2 ×60

2 × 105
(𝑎1 − 𝑎2)   or        

0.04 × 2 × 105

2 × 60
 = (𝑎1 − 𝑎2) 

or  (𝑎1 − 𝑎2) = 
200

3
       …. (1) 

Now using Lame’s equation for outer tube  

   𝑝𝑥 = 
𝑏1

𝑥2
− 𝑎1    …. (2)       and       𝜎𝑥 =  

𝑏1

𝑥2
+ 𝑎1  …. (3) 

At x = 100 mm,  𝑝𝑥 = 0. 

Substituting these values in equation (2), 

              0  = 
𝑏1

1002
− 𝑎1    = 

𝑏1

10000
− 𝑎1   …. (4) 

At x = 60 mm, 𝑝𝑥 = 𝑝 ∗. 
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Substituting these values in equation (2), 

                           p* = 
𝑏1

602
− 𝑎1  =  

𝑏1

3600
− 𝑎1   …. (5) 

Now applying Lame’s equation for inner tube  

   𝑝𝑥 =  
𝑏2

𝑥2
– 𝑎2  …. (6)     and     𝜎𝑥 =  

𝑏2

𝑥2
+ 𝑎2  …. (7) 

At x = 30 mm, 𝑝𝑥 = 0 . 

Substituting these values in equation (6), 

   0 = 
𝑏2

302
– 𝑎2 = 

𝑏2

900
– a2     …. (8) 

At x = 60 mm, 𝑝𝑥 = 𝑝 ∗ . 

Substituting these values in equation (6), 

   p* = 
𝑏2

602
– a2   =  

𝑏2

3600
– a2      …. (9) 

Equating the two values of p*, given by equation (5) and (9) 

   
𝑏2

3600
– 𝑎2 =

𝑏1

3600
− 𝑎1 

or    
𝑏2− 𝑏1

3600
= 𝑎2 − 𝑎1     …. (10) 

But from equation (4), b1 = 10000 𝑎1 

and, from equation (8), b2 = 900 𝑎2 

Substituting these values in equation (x), we get  

   
900𝑎2 −10000 𝑎1

3600
 = 𝑎2 − 𝑎1  

or   900𝑎2  − 10000 𝑎1 =   3600𝑎2 − 3600𝑎1 

or   900𝑎2  − 3600𝑎2    =   −3600𝑎1 +  10000 𝑎1 

or    − 2700 𝑎2   =  6400 𝑎1 

or     𝑎1 =  − 
2700

6400
𝑎2 = − 

27

64
𝑎2  …. (11) 

Substituting these values of 𝑎1in equation (1), we get  

    − 
27

64
𝑎2 −  𝑎2= 

200

3
 

or    − 
(27𝑎2+64 𝑎2)

64
= 

200

3
or    𝑎2  =  − 

200 × 64

3 × 91
   = − 46.88 

Substituting these values in equation (11), we get  
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    𝑎1 = + 
27

64
 × 46.88 = + 19.77 

    b1   = 10000 ×  𝑎1 = 10000 × (19.77) = 197700 

    b2  =  900  ×  𝑎2   = − 900 × 46.88 =  −42192 

and 

1) Radial pressure at the junction (p*) 

Substituting these values of 𝑎2 𝑎𝑛𝑑 𝑏2in equation (9), we get  

    p* = 
𝑏2

3600
– 𝑎2  =  

42192

3600
+  46.88 

          =  
197700

3600
−   19.77 =  54.916 − 19.77 

          =  35.146 N/mm2.  Ans. 

2) Hoop stresses in the two tubes after shrinking on 

The hoop stresses can be calculated from equations (3) and (7) 

(a)  For outer tube  

  𝜎𝑥 =  
𝑏1

𝑥2
+ 𝑎1 = 

197700

𝑥2
+ 19.77  ( b1=197700, 𝑎1 = 19.77) 

𝜎100 =  
197700

1002
+ 19.77  

          = 39.54 N/mm2 (tensile). Ans. 

  𝜎60 =
197700

602
+ 19.77  

          =   74.68 N/mm2 (tensile). Ans. 

and  

(b) For inner tube 

                             𝜎𝑥 =  
𝑏2

𝑥2
+ 𝑎2  = − 

42192

𝑥2
− 46.88    (𝑏2 = −42192, 𝑎2 =

−46.88)   

∴   𝜎60 = − 
42192

602
− 46.88 

                 = − 58.6 N/mm2 (compressive). Ans. 

and  𝜎30 = − 
42192

302
− 46.88 

                  = − 93.76 N/mm2 (compressive). Ans. 
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5.17. THICK SPHERICAL SHELLS 

 Figure shows a spherical shell subjected to an internal fluid pressure p. 

 

Let r2 = External radius  

 r1  = Internal radius. 

Consider an elemental disc of the spherical shell 

of thickness dx at a radius x. Let this elemental disc 

subtend an angle d𝜃 at the centre. 

Due to internal fluid pressure, let the radius x 

increase to (𝑥 + 𝑢) and increase in thickness dx be du. 

Let 𝑒𝑦 = Circumferential strain and  

 𝑒𝑥 = Radial strain  

Now increase in radius = u 

∴ Final radius = 𝑥 + 𝑢 

∴ Circumferential strain, 

  𝑒𝑦 =  
𝐹𝑖𝑛𝑎𝑙 𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒 − 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒
 

        = 
2𝜋(𝑥+𝑢) − 2𝜋𝑥

2𝜋𝑥
=  

𝑢

𝑥
 .     …. (1) 

Now original thickness of element = dx 

Final thickness of element = dx + du 

∴ Radial strain, 

  𝑒𝑥 =   
𝐹𝑖𝑛𝑎𝑙 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 − 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠
 

        =  
(𝑑𝑥+𝑑𝑢) − 𝑑𝑥 

𝑑𝑥
 = 

𝑑𝑢

𝑑𝑥
 .     …. (2) 

But from equation (1), 

  u = 𝑥 .  𝑒𝑦 

∴ Radial strain, 

  𝑒𝑥 =  
𝑑

𝑑𝑥
(𝑥 .  𝑒𝑦) =  𝑒𝑦 + 𝑥 .

𝑑𝑒𝑦

𝑑𝑥
    …. (3) 
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Now consider an elemental spherical shell of radius x and thickness dx as shown in Fig. 

18.7. Let 𝑝𝑥 and 𝑝𝑥 +  𝑑𝑝𝑥 be the radial pressure at radii 𝑥 and 𝑥 + 𝑑𝑥 respectively. 

And 𝜎𝑥  is the circumferential tensile stress which is equal in all direction in a spherical 

shell. 

 Consider the equilibrium of half of the elementary spherical shell on which the 

following external force are acting: 

1) An upward force of  𝜋𝑥2 . 𝑝𝑥 due to internal radial pressure p 

2) A downward force of 𝜋(𝑥 + 𝑑𝑥 )2  .  (𝑝𝑥 +  𝑑𝑝𝑥) due to radial pressure 𝑝𝑥 +

 𝑑𝑝𝑥 . 
3) A downward resisting force   𝜎𝑥(2𝜋𝑥 .  𝑑𝑥). 

Equating the upward and downward forces, we get 

𝜋𝑥2𝑝𝑥 = 𝜋(𝑥 + 𝑑𝑥 )2  .  (𝑝𝑥 +  𝑑𝑝𝑥) + 2𝜋𝑥 . 𝑑𝑥 . 𝜎𝑥 

          = 𝜋(𝑥2 + 𝑑𝑥2 + 2𝑥 . 𝑑𝑥 )(𝑝𝑥 +  𝑑𝑝𝑥) + 2𝜋𝑥 . 𝑑𝑥 . 𝜎𝑥 

  𝑥2 . 𝑝𝑥 = (𝑥2 + 𝑑𝑥2 + 2𝑥 . 𝑑𝑥 )(𝑝𝑥 +  𝑑𝑝𝑥) + 2𝑥 . 𝑑𝑥 . 𝜎𝑥 

                    =(𝑥2 . 𝑝𝑥  + 𝑑𝑥2 . 𝑝𝑥 + 2𝑥 . 𝑑𝑥  . 𝑝𝑥 +  𝑥2.  𝑑𝑝𝑥 + 𝑑𝑥2 .  𝑑𝑝𝑥 +

2𝑥 . 𝑑𝑥 . 𝑑𝑝𝑥) 

        + 2𝑥 . 𝑑𝑥 . 𝜎𝑥 

Neglecting squares and products of  𝑑𝑥 𝑎𝑛𝑑  𝑑𝑝𝑥, we get  

    𝑥2 . 𝑝𝑥 = 𝑥2 . 𝑝𝑥  + 0 + 2𝑥 . 𝑑𝑥  . 𝑝𝑥 +  𝑥2.  𝑑𝑝𝑥 + 0 + 0 + 2𝑥 . 𝑑𝑥 . 𝜎𝑥 

 0 = 2𝑥 . 𝑑𝑥  . 𝑝𝑥 +  𝑥2.  𝑑𝑝𝑥 + 2𝑥 . 𝑑𝑥 . 𝜎𝑥 

or      2𝑥 . 𝑑𝑥 . 𝜎𝑥 = − 2𝑥 . 𝑑𝑥  . 𝑝𝑥 −  𝑥2.  𝑑𝑝𝑥 

or 2 . 𝜎𝑥 =  −2 . 𝑝𝑥 − 𝑥 .
𝑑𝑝𝑥

𝑑𝑥
    (Divided both sides by 𝑥 . 𝑑𝑥) 

or  𝜎𝑥 =  − 𝑝𝑥 −
𝑥

2
 .

𝑑𝑝𝑥

𝑑𝑥
       …. (A) 

 Differentiating the above equation w.r.t. 𝑥., we get 



 

STRENGTH OF MATERIALS 

 

360 | P a g e  
 

𝑑

𝑑𝑥
(𝜎𝑥) =  

𝑑

𝑑𝑥
(−𝑝𝑥) −

1

2

𝑑

𝑑𝑥
(𝑥.

𝑑𝑝𝑥

𝑑𝑥
) =  − 

𝑑𝑝𝑥

𝑑𝑥
−  

1

2
(𝑥.

𝑑2𝑝𝑥

𝑑𝑥2
+  

𝑑𝑝𝑥

𝑑𝑥
) …. (4) 

At any point in the elementary spherical shell, there are three principle stresses: 

1) The radial pressure 𝑝𝑥 , which is compressive  

2) Circumferential (or hoop stress) 𝜎𝑥, which is tensile and 

3) Circumferential (or hoop stress) 𝜎𝑥, which is tensile of the same magnitude as of 

(2) and on a plane at right angles to the plane of 𝜎𝑥 of (2). 

Now radial strain, 

𝑒𝑥 =
𝑝𝑥

𝐸
+  

𝜎𝑥

𝑚𝐸
 +  

𝜎𝑥

𝑚𝐸
    Here 

1

𝑚
 = Poisson’s ratio = 𝜇 

      = 
𝑝𝑥

𝐸
+  

2𝜎𝑥

𝑚𝐸
  (compressive) 

      = − (
𝑝𝑥

𝐸
+ 

2𝜎𝑥

𝑚𝐸
) (tensile)       …. (5) 

and circumferential strain, 

 𝑒𝑦 =
𝜎𝑥

𝐸
−  

𝜎𝑥

𝑚𝐸
 +  

𝑝𝑥

𝑚𝐸
    (tensile) 

       = 
1

𝐸
(𝜎𝑥 −  

𝜎𝑥

𝑚
 +  

𝑝𝑥

𝑚
) =  

1

𝐸
[𝜎𝑥 (

𝑚−1

𝑚
) +  

𝑝𝑥

𝑚
]       (tensile)  …. (6) 

Substituting the values of 𝑒𝑥 and 𝑒𝑦 from equation (5) and (6) in equation (3),we get  

− (
𝑝𝑥

𝐸
+  

2𝜎𝑥

𝑚𝐸
) =  

1

𝐸
[𝜎𝑥 (

𝑚−1

𝑚
) +  

𝑝𝑥

𝑚
]   +  𝑥 .

𝑑

𝑑𝑥
[

1

𝐸
{𝜎𝑥 (

𝑚−1

𝑚
) + 

𝑝𝑥

𝑚
}] 

−
1

𝐸
(𝑝𝑥 +  

2𝜎𝑥

𝑚𝐸
) = 

1

𝐸
[

𝜎𝑥(𝑚−1)

𝑚
+ 

𝑝𝑥

𝑚
] + 

𝑥

𝐸
[(

𝑚−1

𝑚
) .

𝑑𝜎𝑥

𝑑𝑥
 +  

1

𝑚

𝑑𝑝𝑥

𝑑𝑥
] 

− (𝑝𝑥 +  
2𝜎𝑥

𝑚𝐸
) =  (

𝜎𝑥(𝑚 − 1)

𝑚
+  

𝑝𝑥

𝑚
) + 

𝑥(𝑚 − 1)

𝑚
 .

𝑑𝜎𝑥

𝑑𝑥
 + 

𝑥

𝑚

𝑑𝑝𝑥

𝑑𝑥
 

−𝑚𝑝𝑥 − 2𝜎𝑥 = (𝑚 − 1)𝜎𝑥 + 𝑝𝑥 + 𝑥(𝑚 − 1)
𝑑𝜎𝑥

𝑑𝑥
+ 𝑥

𝑑𝑝𝑥

𝑑𝑥
 

−𝑝𝑥(𝑚 + 1) −  𝜎𝑥(2 + 𝑚 − 1) = 𝑥(𝑚 − 1)
𝑑𝜎𝑥

𝑑𝑥
+ 𝑥

𝑑𝑝𝑥

𝑑𝑥
 

− (𝑚 + 1)(𝑝𝑥 +  𝜎𝑥) =  𝑥(𝑚 − 1)
𝑑𝜎𝑥

𝑑𝑥
+ 𝑥

𝑑𝑝𝑥

𝑑𝑥
 

(𝑚 + 1)(𝑝𝑥 +  𝜎𝑥) +  𝑥(𝑚 − 1)
𝑑𝜎𝑥

𝑑𝑥
+ 𝑥

𝑑𝑝𝑥

𝑑𝑥
= 0. 

Now substituting the value of 𝜎𝑥 and
𝑑

𝑑𝑥
 (𝜎𝑥) from equation (A) and (4) in the above 

equation, we get 



 
THIN AND THICK CYLINDERS AND SPHERES 

 

361 | P a g e  
 

(𝑚 + 1) (𝑝𝑥 + −𝑝𝑥 −
𝑥

2
.
𝑑𝑝𝑥

𝑑𝑥
) + 𝑥(𝑚 − 1) × [−

𝑑𝑝𝑥

𝑑𝑥
−

1

2
(𝑥

𝑑2𝑝𝑥

𝑑𝑥2
+

𝑑𝑝𝑥

𝑑𝑥
)] + 𝑥

𝑑𝑝𝑥

𝑑𝑥

= 0 

(𝑚 + 1) (−
𝑥

2
.
𝑑𝑝𝑥

𝑑𝑥
) + 𝑥(𝑚 − 1) (−

3

2

𝑑𝑝𝑥

𝑑𝑥
−

1

2
𝑥

𝑑2𝑝𝑥

𝑑𝑥2
) + 𝑥

𝑑𝑝𝑥

𝑑𝑥
= 0 

𝑑𝑝𝑥

𝑑𝑥
[−

𝑥

2
(𝑚 + 1) −

3𝑥

2
(𝑚 − 1) + 𝑥] −  

𝑥2(𝑚 − 1)

2

𝑑2𝑝𝑥

𝑑𝑥2
= 0 

𝑥.
𝑑𝑝𝑥

𝑑𝑥
[
−𝑚 − 1 − 3𝑚 + 3 + 2

2
] −

𝑥2

𝑚
(𝑚 − 1)

𝑑2𝑝𝑥

𝑑𝑥2
= 0 

𝑑𝑝𝑥

𝑑𝑥
(

−4𝑚+4

2
) −  

𝑥

2
(𝑚 − 1)

𝑑2𝑝𝑥

𝑑𝑥2
= 0    (Cancelling  𝑥) 

−
4

2

𝑑𝑝𝑥

𝑑𝑥
(𝑚 − 1) −

𝑥

2
(𝑚 − 1)

𝑑2𝑝𝑥

𝑑𝑥2
= 0 

4𝑑𝑝𝑥

𝑑𝑥
+ 𝑥

𝑑2𝑝𝑥

𝑑𝑥2
= 0   [𝐶𝑎𝑛𝑐𝑒𝑙𝑙𝑖𝑛𝑔 −  

(𝑚−1)

2
] 

Substituting    
𝑑𝑝𝑥

𝑑𝑥
= 𝑍 in the above equation, we get  

  4Z + 𝑥.
𝑑

𝑑𝑥
(

𝑑𝑝𝑥

𝑑𝑥
) = 0 

    4Z + 𝑥.
𝑑𝑍

𝑑𝑥
 = 0 

    4Z = −𝑥.
𝑑𝑍

𝑑𝑥
 

𝑑𝑍

𝑑𝑥
= −4

𝑑𝑥

𝑥
 

Integrating the above equation, we get 

   log𝑒 𝑍 = −4 log𝑒 𝑥 + log𝑒 𝐶1 

where  𝐶1 is the constant of integration. 

 The above equation can also be written as  

   log𝑒 𝑍 = log𝑒 𝑥−4 + log𝑒 𝐶1 = log𝑒 𝐶1  × 𝑥−4 

    = log𝑒 (
𝐶1

𝑥4
)     or    Z = 

𝐶1

𝑥4
 

But     Z = 
𝑑𝑝𝑥

𝑑𝑥
 

∴    
𝑑𝑝𝑥

𝑑𝑥
=

𝐶1

𝑥4
 or      𝑑𝑝𝑥= 

𝐶1

𝑥4
𝑑𝑥 

Integrating the above equation, we get  
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    𝑝𝑥 =  − 
𝐶1

3𝑥3
+ 𝐶2     ….. (7) 

where  𝐶2is another constant of integration. 

 Substituting this value of  𝑝𝑥 in equation (A), we get 

    𝜎𝑥 = − (−
𝐶1

3𝑥3
+ 𝑐2) −  

𝑥

2

𝑑𝑝𝑥

𝑑𝑥
 

          = 
𝐶1

3𝑥3
− 𝑐2 −

𝑥

2
 .

𝐶1

𝑥4
   (

𝑑𝑝𝑥

𝑑𝑥
=

𝐶1

𝑥4
) 

           = 
𝐶1

3𝑥3
− 𝑐2 −  

𝐶1

2𝑥3
=  − 

𝐶1

6𝑥3
− 𝑐2  …. (8) 

If we substitute   C1 = −6𝑏 and C2 = −𝑎 in equation (7) and (8), we get  

    𝑝𝑥 =  − 
(−6𝑏)

3𝑥3
+ (−𝑎) =   

2𝑏

𝑥3
− 𝑎  …. (9) 

    𝜎𝑥 = − 
(−6𝑏)

6𝑥3
− (−𝑎) =   

𝑏

𝑥3
+ 𝑎   …. (10) 

and  

The constants a and b are obtained from initial given conditions. 

For example, (i) at x = r1, 𝑝𝑥 = 0  and at x = r2, 𝑝𝑥 = 𝑝. 

Substituting these values in equation (9), we get 

    0 = 
2𝑏

𝑟1
3 − 𝑎 …. (11)    and             p = 

2𝑏

𝑟2
3 − 𝑎…. (12) 

Solving equations (11) and (12), we get  

    a = 
𝑝𝑟2

3

𝑟1
3−𝑟2

3      and        b =
𝑝𝑟1

3𝑟2
3

2(𝑟1
3−𝑟2

3)
. 

Problem 5.29: A thick spherical shell of 200 mm internal  diameter is subjected to an 

internal fluid pressure of 7 N/mm2. If the permissible tensile stress in the shell material 

is 8 N/mm2, find the thickness of the shell. 

Sol. Given : 

Internal dia,    = 200 mm 

∴Internal radius,            r1= 100 mm 

Internal fluid pressure,         p = 7 N/mm2 

Permissible tensile stress,          𝜎𝑥= 8 N/mm2. 

The radial pressure and hoop stress at any radius of spherical shell are given by  

  𝑝𝑥 =  
2𝑏

𝑥3
− 𝑎 …. (1)    and       𝜎𝑥 =  

𝑏

𝑥3
+ 𝑎 …. (2) 
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 The hoop stress, 𝜎𝑥 will be maximum at the internal radius . Hence permissible 

tensile stress of 8 N/mm2 is the hoop stress at the internal radius. 

At x =100 mm,𝑝𝑥 = 7 N/mm2. 

Substituting these values in equation (1), we get  

7 =  
2𝑏

1003
− 𝑎 =  

2𝑏

1000000
− 𝑎    …. (3) 

At x =100 mm,𝜎𝑥  = 8 N/mm2. 

Substituting these values in equation (2), we get  

   8 =  
𝑏

1003
+ 𝑎 =  

𝑏

1000000
− 𝑎    …. (4) 

Adding equations (3) and (4), we get  

   15 = 
3𝑏

1000000
 

   b =  
1000000 ×15

3
= 5000000. 

Substituting the value of b in equation (4), we get 

       8 = 
5000000

1000000
− 𝑎 = 5 + 𝑎  

∴       𝑎 = 8 − 5 = 3 

Substituting the value of a and  b in equation (1), we get 

   𝑝𝑥 =  
2×5000000

𝑥3
− 3 

Let    r2 = External radius of the shell. 

At outside, the pressure  

   𝑝𝑥 = 0 or at  x = r2, 𝑝𝑥 = 0. 

Substituting these values in equation (5), we get 

   0  = 
2×5000000

𝑟2
3

− 3     or  

          𝑟2
3 = 

10000000

3
 

∴   r2   = (
107

3
)

1/3

 = (3.333)1/3 × 102 = 149.3 mm 

∴ Thickness of the shell, 

   t = 𝑟2 − 𝑟1 = 149.3 − 100 

       = 49.3 𝑚𝑚.Ans. 
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Problem 5.30: For the problem 5.29, find the minimum value of the hoop stress. 

Sol. Given : 

The data from problem 18.6 is : 

   r1 = 100 mm , r2 = 149.3 mm 

   p = 7 N/mm2, 𝜎𝑥 at the internal radius = 8 N/mm2 

Values of constants are ; 

a = 3, b = 5000000 

The hoop stress at any radius of spherical shell is given by  

  𝜎𝑥 =  
𝑏

𝑥3
+ 𝑎 = 

5000000

𝑥3
+ 3 

The hoop stress will be minimum at the external radius i.e., at x = r2 = 149.3 mm. 

Substituting this value of x in the above equation, we get  

                     𝜎𝑥 = 
5000000

(149.3)3
+ 3 = 

5000000

(
10000000

3
)

+ 3 =  1.5 + 3 = 4.5 N/mm2.  Ans.  

 

IMPORTANT TERMS  

Circumferential Stress 

(OR) Hoop Stress (𝜎𝑐) 
𝜎𝑐 =  

𝑝 𝑥 𝑑

2𝑡
 

p = intensity of pressure 

inside the     cylinder 

d = inner diameter of 

cylinder shell 

t = thickness of cylinder 

shell 

𝜂𝑙= efficiency of 

longitudinal joint 

𝜂𝑐= efficiency of 

circumferential joint  

Longitudinal Stress 

(𝜎𝑙) 
𝜎𝑙 =  

𝑝 𝑥 𝑑

4𝑡
 

Circumferential Stress 

with efficiency (𝜎𝑐) 
𝜎𝑐 =  

𝑝 𝑥 𝑑

2 𝑡 𝑥 𝜂𝑙  
 

Longitudinal Stress 

with efficiency (𝜎𝑙) 
𝜎𝑙 =  

𝑝 𝑥 𝑑

4 𝑡 𝑥 𝜂𝑐
 

Circumferential Strain 
𝑒𝑐 =

𝛿𝑑

𝑑
=  

𝑝𝑑

2 𝑡 𝐸
(1 −  

1

2
𝜇) 

𝜇= poission’s ratio 

E = young’s modulus 

l = length of shell Longitudinal Strain 
𝑒𝑙 =

𝛿𝑙

𝑙
=  

𝑝𝑑

2 𝑡 𝐸
(

1

2
−  𝜇) 

Change in diameter 
𝛿𝑑 =  

𝑝𝑑

2 𝑡 𝐸
(1 − 

1

2
𝜇) 𝑑 

Change in Length 
𝛿𝑙 =  

𝑝𝑑

2 𝑡 𝐸
(

1

2
−  𝜇) 𝑙 

Volumetric Strain 
𝑒𝑣 =

𝛿𝑉

𝑉
=  

𝑝𝑑

2 𝑡 𝐸
(

5

2
−  2𝜇) 

𝑒𝑣 =  2𝑒𝑐 −  𝑒𝑙 

𝑉𝑜𝑙𝑢𝑚𝑒 (𝑉) =  
𝜋𝑑2

4
𝑥 𝑙 

Change in Volume 
𝛿𝑉 =  

𝑝𝑑

2 𝑡 𝐸
(

5

2
−  2𝜇) 𝑉 (𝑜𝑟)

= (2𝑒𝑐 −  𝑒𝑙)𝑉 
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Major Principal Stress 

=  
𝜎𝑐 + 𝜎𝑙

2
+ √(

𝜎𝑐 − 𝜎𝑙

2
)

2

+ 𝜏2 

𝜏 = shear stress 

Minor Principal Stress 

=  
𝜎𝑐 + 𝜎𝑙

2
− √(

𝜎𝑐 − 𝜎𝑙

2
)

2

+ 𝜏2 

 

Maximum Shear stress 1

2
(𝑀𝑎𝑗𝑜𝑟 𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 𝑆𝑡𝑟𝑒𝑠𝑠

−  𝑀𝑖𝑛𝑜𝑟 𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 𝑆𝑡𝑟𝑒𝑠𝑠) 

𝜌 = density of the material 

r = mean radius of the 

cylinder 

𝜔 = angular speed of the 

cylinder 

   = 
2𝜋𝑁

60 
 

Rotational Stress  𝜎𝑟 =  𝜌𝑟2𝜔2 

SPHERICAL SHELLS 

Circumferential Stress 

(OR) Hoop Stress (𝜎𝑐) 
𝜎𝑐 =  

𝑝 𝑥 𝑑

4𝑡
   𝑂𝑅 =  

𝑝 𝑥 𝑑

4𝑡 𝜂
 

p = intensity of pressure 

inside the spherical shell 

d = inner diameter of 

spherical shell 

t = thickness of spherical 

shell  

E = young’s modulus 

l = length of shell 

𝜇= poission’s ratio 

 

Circumferential Strain 
𝑒𝑐 =

𝛿𝑑

𝑑
=  

𝑝𝑑

4 𝑡 𝐸
(1 −  𝜇) 

Volumetric Strain 
𝑒𝑣 =

𝛿𝑉

𝑉
=  

3𝑝𝑑

4 𝑡 𝐸
(1 −  𝜇) 

𝑉𝑜𝑙𝑢𝑚𝑒 (𝑉) =  
4

3
𝑥 𝜋𝑟3 

THEORETICAL QUESTIONS 

1. Define thin cylinders. Name the stresses set up in a thin cylinder subjected to int 

fluid pressure. 

2. Prove that the circumference stress and longitudinal stress 

                               𝜎1 = pd/2t, 𝜎2 = pd/4t where p = int fluid pressure 

                                                          D = int dia of thin cylinder 

                                                           T = thickness of wall of thin cylinder 

Derive an expression for circumferential stress and longitudinal stress for a thin shell 

subjected to an int pressure. 

3. A)Derive the expression for hoop stress and longitudinal stress in a thin cylinder 

with ends closed by rigid flanges and subjected to an internal fluid pressure p. Take 

the int dia and shell thickness of the cylinder to be d and t respectively. B )Derive 

from the first principles of expressions for circumferential and longitudinal 

stresses in a thin cylinder closed at both ends and subjected to int fluid pressure. 

4. Show that in thin cylinder shells subjected to int fluid pressure , the circumferential 

stress is twice the longitudinal stress. 

5. While resighing a cylindrical vessel, which stress should be used for calculating 

the thickness of the cylindrical vessel. 

6. Prove that max shear stress at any point in a thin cylinder, subjected to int fluid 

pressure is given by, 

                          Max shear stress = pd/8t 
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                         Where p = int fluid pressure 

                                       D = int dia of thin cylinder 

                                       T = wall thickness of cylinder 

7. Find the expression for circumferential stress and longitudinal stress for a 

longitudinal joint and circumferential joint. 

8. Prove that the circumferential strain and longitudinal strain produced in thin 

cylinder when subjected to int flud pressure are given by 

                         𝑑1 = pd/2tE(1-1/2*𝜇) 

                          𝑒2 = pd/2tE(1/2 – 𝜇) 

     Where p = int fluid pressure 

                  D = int dia of thin cylinder 

                   T = thickness of wall of thin cylinder 

                    𝜇 = poisons ratio 

9. A cylindrical shell is subjected to int fluid pressure find an expression for change 

in dia and change in length of cylinder 

10. Prove that volumetric strain in case of a thin cylinder subjected to int fluid pressure 

is equal to two times the circumferential strain plus longitudinal strain. show that 

when a thin walled cylindrical vessel of dia D, length L and thickness t is subjected 

to an int pressure p, the change in volume = 𝜋*p*L*𝐷3(5-4*𝜇)/16tE 

11. Find an expression for the change in volume of a thin cylindrical shell subjected 

to int fluid pressure 

12. Write down expression for major principal stress, minor principle stress when a 

thin cylindrical shell is subjected to int fluid pressure and a torque 

13. Show that when a thin walled spherical vessel of dia d and thickness t is subjected 

to int fluid pressure p the increase in volume equal to  

                         
𝜋

8
∗ 𝑝𝑑4/𝑡𝐸(1 −

1

𝜇
) 

       Where E = elastic modulus  

                     𝜇 = poisons ratio 

14. Differentiate between a thin cylinder and thick cylinder. Find an expression for the 

radial pressure and hoop stress at any point in case of thick cylinder. 

15. What do you mean by lame’s equation. How will you derive these equations. 

16. The hoop stress is min at the outer surface and is max at the inner surface of the 

thick cylinder. prove this statement. Sketch the radial pressure distribution and 

hoop stress distribution across the section of cylinder. 

17. What do you mean by a thick compound cylinder. How will you determine the 

hoop stress in a thick compound cylinder. 

18. What are the different methods of reducing hoop stress. Explain the terms: wire 

winding of thin cylinders and shrinking one cylinder over another cylinder. 

19. Prove that the original difference in radii at the junction of a compound cylinder 

for shrinking is given by 
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                                     Dr = 2r*(𝑎1 − 𝑎2)/E 

 Where r* = common radius after shrinking 

                   E = young’s modulus 

                    A = constants 

Derive an expression for the radial pressure and hoop stress for a thick spherical shell. 

NUMERICAL PROBLEMS 

1. A cylindrical pipe of dia 2m and thickness 2cm is subjected to an int fluid pressure 

of 1.5 N/𝑚𝑚2. determine longitudinal stress and circumferential stress. Ans = 37.5 

N/𝑚𝑚2, 75 N/𝑚𝑚2 

2. A cylinder of int dia of 3m and of thickness 6m contains a gas. If the tensile stress 

in the material is not to exceed 70 N/𝑚𝑚2, determine the int pressure of gas. Ans 

= 2.8 N/𝑚𝑚2 

3. A cylinder of int dia 0.60m contains air at a pressure of 7.5 N/𝑚𝑚2. If max 

permissible stress induced in the material is 75 N/𝑚𝑚2 find the thickness of 

cylinder. Ans = 3cm 

4. A thin cylinder of int dia 2m contains a fluid at an int pressure of 3 N/𝑚𝑚2. 

Determine the max thickness of cylinder if longitudinal stress is not to exceed 303 

N/𝑚𝑚2 and the circumferential stress is not to exceed 403 N/𝑚𝑚2. Ans = 7.5 cm 

5. A water main 90cm dia contains water at a pressure head of 110m. If the weight 

density of water is 9810 N/𝑚𝑚2, find the thickness of metal required for the water 

main. Given the permissible stress as 223 N/𝑚𝑚2. Ans = 2.25 cm 

6. A boiler is subjected to an internal steam pressure of 3 N/𝑚𝑚2. The thickness of 

boiler plate is 2.5 cm and the permissible tensile stress is 125 N/𝑚𝑚2. Find out 

max dia when efficiency of longitudinal joint is 90% and that of circumferential 

joint is 35%. Ans = 145.83cm 

7. A boiler shell is to be made of 20mm thick plate having a limiting tensile stress of 

125N/𝑚𝑚2. If the efficient of longitudinal and circumferential joints are 80% and 

30%. Determine max permissibe dia of shell for an int pressure of 2.5 N/𝑚𝑚2 and 

permissible intensity of int pressure when the shell dia is 1.6m. ans = 120 cm, 

1.875 N/𝑚𝑚2 

8. A cylinder of thickness 2cm has to withstand max int pressure of 2 N/𝑚𝑚2. If the 

ultimate tensile stress in the material of cylinder is 292 N/𝑚𝑚2, factor of safety 4 

and joint efficiency 80%, determine the dia of cylinder. Ans = 116.8cm 

9. A thin cylindrical sell of 120 cm dia, 1.5cm thick and 6m long is subjected to int 

fluid pressure of 2.5 N/𝑚𝑚2. If poisons ratio is 0.3. find change in dia, change in 

length,change in volume. Ans = 0.051m, 0.06cm, 6449.7cm 

10. A cylindrical shell 100cm long 20cm int dia having thickness of metal as 10mm is 

filled with fluid at atm pressure. If an additional 20cm of fluid is pumped into 

cylinder find the pressure exerted by fluid on cylinder and the hoop stress 

induced.poisons ratio = 0.3. ans = 10.05N/𝑚𝑚2, 100.52 N/𝑚𝑚2 
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11. A cylindrical vessel whose ends are closed by means of rigid flange plates is made 

of steel plates 4mm thick. The length and int dia of vessel are 100cm and 30 cm. 

Determine the longitudinal and hoop stress in cylindrical shell due to int fluid 

pressure of 2 N/𝑚𝑚2. Also calculate the increase in length, dia and volume of 

vessel.poissons ratio = 0.3. ans = 37.53 N/𝑚𝑚2, 75 N/𝑚𝑚2, 0.075 cm, 0.0095cm, 

50.36cm 

12. A thin cylindrical tube 100mm int dia and 5mm thick is closed at the ends and is 

subjected to an int pressure of 5 N/𝑚𝑚2. A torque of 22000Nm is also applied to 

the tube.find the hoop stress, longitudinal stress,max and min principle stresses 

and max shear stress. Ans = 50N/𝑚𝑚2, 25 N/𝑚𝑚2, 28N/𝑚𝑚2, 68.16 N/𝑚𝑚2, 

6.84 N/𝑚𝑚2, 30.66N/𝑚𝑚2 

13. A copper cylinder 100 cm long, 50 cm ext dia and wall thickness 5mm has its both 

ends closed by rigid blank flanges. It is initially full of oil at atm pressure. 

Calculate the additional volume of oil which must be pumped into it in order to 

raise the oil pressure to 4 N/𝑚𝑚2 above the atm pressure. Ans = 486.3cm 

14. A vessel in the shape of a spherical shell of 1.4dia and 4.5mm thickness is 

subjected to a pressure of 1.8 N/𝑚𝑚2. Determine the stress induced in the material 

of the vessel. Ans = 140 N/𝑚𝑚2 

15. A thin spherical shell of 1.20mm int dia is subjected to int pressure of 1.6 N/𝑚𝑚2. 

If the permissible stress in the plate material is 80 N/𝑚𝑚2 and joint efficiency is 

75% find the min thickness. Ans = 8mm 

16. A thin spherical shell of int dia 1.5m and of thickness 8mm is subjected to an int 

pressure of 1.5 N/𝑚𝑚2. Determine the increase in dia and increase in 

volume.poisons ratio = 0.3. ans = 0.369mm, 1304*103𝑚𝑚3 

17. Determine the max hoop stress across the section of pipe of ext dia 600 mm and 

int dia  440 mm, when the pipe is subjected to an int fluid pressure of 0 N/𝑚𝑚2. 

Ans = 99.9 N/𝑚𝑚2 

18. Find the thickness of metal necessary for a cylinder shell of int dia 150mm to 

withstand an int pressure of 50 N/𝑚𝑚2. The max hoop stress in section is not to 

exceed 150 N/𝑚𝑚2. Ans = 31mm 

19. A compound cylinder is made by shrinking a cylinder of ext dia 200mm and int 

dia 160mm over another cylinder of ext dia 160mm and int dia 120mm. The radial 

pressure at the junction after shrinking is 8 N/𝑚𝑚2. Find the final stress set up 

across the section when the compound cylinder is  subjected to an int fluid pressure 

of 60 N/𝑚𝑚2. Ans = inner 𝐹60 = 90.9 and 𝐹80 = 57.9 N/𝑚𝑚2, outer 𝐹80 = 122.9 

and 𝐹100 = 25.9 N/𝑚𝑚2 

20. A steel cylinder of 200mm ext dia is to be shrunk to another steel cylinder of 

100mm int dia. After shrinking the dia at junction is 150 mm and radial pressure 
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at the junction is 12.5N/mm. Find the original difference in radii at the junction. 

Ans = 0.02025mm 

21. A steel tube of 240mm ext dia is to be shrunk on another steel tube of 80mm int 

dia. After shrinking the dia at junction is 160mm. Before shrinking on the 

difference of dia at the junction was 0.08mm. calculate the radii pressure at the 

junction and hoop stress developed in the two tubes after shrinking. 

22. A thick spherical shell of 400mm int dia is subjected to an int fluid pressure of 1.5 

N/𝑚𝑚2. If the permissible tensile stress in the shell material is 3 N/𝑚𝑚2. Find the 

necessary thickness of shell. Ans = 52mm 

 

 


