THE STABLE MARRIAGE PROBLEM.

Stable Marriage Problem

- There is a set Y = {m₁,...,m_n} of *n* men and a set X = {w₁,...,w_n} of *n* women. Each man has a ranking list of the women, and each woman has a ranking list of the men (with no ties in these lists).
- A marriage matching M is a set of n pairs (m_i, w_j) .
- A pair (*m*, *w*) is said to be a *blocking pair* for matching M if man *m* and woman *w* are not matched in M but prefer each other to their mates in M.
- A marriage matching M is called *stable* if there is no blocking pair for it; otherwise, it's called *unstable*.
- The *stable marriage problem* is to find a stable marriage matching formen's and women's given preferences.

Instance of the Stable Marriage Problem

An instance of the stable marriage problem can be specified either by two sets of preference lists or by a ranking matrix, as in the example below.

men'spreferences			women's pre	women's preferences		
	1 st	2 nd	3 rd	1 st	2 nd	3 rd
Bob:	Lea	Ann	Sue	Ann: Jim	Tom	Bob
Jim:	Lea	Sue	Ann	Lea:Tom	Bob	Jim
Tom:	Sue	Lea	Ann	Sue:Jim	Tom	Bob

ranking matrix

	Ann	Lea	Sue
Bob	2,3	1,2	3,3
Jim	3,1	1,3	2,1
Tom	3,2	2,1	1,2

Stable Marriage Algorithm (Gale-Shapley)

Step 0: Start with all the men and women being free

Step 1 : While there are free men, arbitrarily select one of them and do the following:

- *Proposal* The selected free man *m* proposes to *w*, the next woman on his preference list
- *Response* If w is free, she accepts the proposal to be matched with m. If she is not free, she compares m with her current mate. If she prefers m to him, she accepts m's proposal, making her former mate free; otherwise, she simply rejects m's proposal, leaving m free

Step 2 Return the set of *n* matched pairs

Example

Free men: Bob, Jim, Tom

	Ann	Lea	Sue
Bob	2,3	<u>1.2</u>	3,3
Jim	3,1	1,3	2,1
Tom	3,2	2,1	1,2

Bob proposed to Lea, Lea

accepted Bob Free men: Jim,

Tom

	Ann	Lea	Sue
Bob	2,3	1,2	3,3
Jim	3,1	<u>1,3</u>	2,1
Tom	3,2	2,1	1,2

AD3351 | DESIGN AND ANALYSIS OF ALGORITHMS

Jim proposed to Lea,

Lea rejected Free men:

Jim, Tom

	Ann	Lea	Sue
Bob	2,3	1,2	3,3
Jim	3,1	1,3	2,1
Tom	3,2	2,1	1,2

Jim proposed to Sue, Sue

accepted Free men: Tom

	Ann	Lea	Sue
Bob	2,3	1,2	3,3
Jim	3,1	1,3	2,1
Tom	3,2	2,1	<u>1,2</u>

Tom proposed to Sue,

Sue rejected Free men:

Tom

	Ann	Lea	Sue
Bob	2,3	1,2	3,3
Jim	3,1	1,3	<u>2,1</u>
Tom	3,2	2.1	1,2

Tom proposed to Lea, Lea replaced Bob with Tom Free men: Bob

	Ann	Lea	Sue
Bob	2,3	1,2	3,3
Jim	3,1	1,3	2,1
Tom	3,2	2,1	1,2

Bob proposed to Ann, Ann accepted

An accepted proposal is indicated by a boxed cell; a rejected proposal is shown by an underlined cell.

Analysis of the Gale-Shapley Algorithm

- The algorithm terminates after no more than n^2 iterations with a stable marriage output.
- The stable matching produced by the algorithm is always *man-optimal*: each man gets the highest rank woman on his list under any stable marriage. One can obtain the *woman- optimal* matching by making women propose to men.
- A man (woman) optimal matching is unique for a given set of participant preferences.
- The stable marriage problem has practical applications such as matching medicalschool graduates with hospitals for residency training.