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VIRTUALIZATION STRUCTURES  

In general, there are three typical classes of VM architecture. Figure 3.1 showed 

the architectures of a machine before and after virtualization. Before virtualization, 

the operating system manages the hardware. After virtualization, a virtualization 

layer is inserted between the hardware and the operat-ing system. In such a case, 

the virtualization layer is responsible for converting portions of the real hardware 

into virtual hardware. Therefore, different operating systems such as Linux and 

Windows can run on the same physical machine, simultaneously. Depending on 

the position of the virtualiza-tion layer, there are several classes of VM 

architectures, namely the hypervisor architecture, para- 

  

virtualization, and host-based virtualization. The hypervisor is also known as 

the VMM (Virtual Machine Monitor). They both perform the same virtualization 

operations. 

  

1. Hypervisor and Xen Architecture 

  

The hypervisor supports hardware-level virtualization (see Figure 3.1(b)) on bare 

metal devices like CPU, memory, disk and network interfaces. The hypervisor 

software sits directly between the physi-cal hardware and its OS. This 

virtualization layer is referred to as either the VMM or the hypervisor. The 

hypervisor provides hypercalls for the guest OSes and applications. Depending on 

the functional-ity, a hypervisor can assume a micro-kernel architecture like the 

Microsoft Hyper-V. Or it can assume a monolithic hypervisor architecture like 

the VMware ESX for server virtualization. 

  

A micro-kernel hypervisor includes only the basic and unchanging functions 

(such as physical memory management and processor scheduling). The device 

drivers and other changeable components are outside the hypervisor. A monolithic 

hypervisor implements all the aforementioned functions, including those of the 

device drivers. Therefore, the size of the hypervisor code of a micro-kernel hyper-

visor is smaller than that of a monolithic hypervisor. Essentially, a hypervisor must 

be able to convert physical devices into virtual resources dedicated for the 

deployed VM to use. 
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1.1 The Xen Architecture 

  

Xen is an open source hypervisor program developed by Cambridge University. 

Xen is a micro-kernel hypervisor, which separates the policy from the mechanism. 

The Xen hypervisor implements all the mechanisms, leaving the policy to be 

handled by Domain 0, as shown in Figure 3.5. Xen does not include any device 

drivers natively [7]. It just provides a mechanism by which a guest OS can have 

direct access to the physical devices. As a result, the size of the Xen hypervisor is 

kept rather small. Xen provides a virtual environment located between the 

hardware and the OS. A number of vendors are in the process of developing 

commercial Xen hypervisors, among them are Citrix XenServer [62] and Oracle 

VM [42]. 

  

The core components of a Xen system are the hypervisor, kernel, and applications. 

The organi-zation of the three components is important. Like other virtualization 

systems, many guest OSes can run on top of the hypervisor. However, not all guest 

OSes are created equal, and one in   

particular controls the others. The guest OS, which has control ability, is called 

Domain 0, and the others are called Domain U. Domain 0 is a privileged guest OS 

of Xen. It is first loaded when Xen boots without any file system drivers being 

available. Domain 0 is designed to access hardware directly and manage devices. 

Therefore, one of the responsibilities of Domain 0 is to allocate and map hardware 

resources for the guest domains (the Domain U domains). 

  

For example, Xen is based on Linux and its security level is C2. Its management 

VM is named Domain 0, which has the privilege to manage other VMs 

implemented on the same host. If Domain 0 is compromised, the hacker can 

control the entire system. So, in the VM system, security policies are needed to 

improve the security of Domain 0. Domain 0, behaving as a VMM, allows users to 

create, copy, save, read, modify, share, migrate, and roll back VMs as easily as 

manipulating a file, which flexibly provides tremendous benefits for users. 

Unfortunately, it also brings a series of security problems during the software life 

cycle and data lifetime. 

  

Traditionally, a machine’s lifetime can be envisioned as a straight line where the 

current state of the machine is a point that progresses monotonically as the 
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software executes. During this time, con-figuration changes are made, software is 

installed, and patches are applied. In such an environment, the VM state is akin to 

a tree: At any point, execution can go into N different branches where multiple 

instances of a VM can exist at any point in this tree at any given time. VMs are 

allowed to roll back to previous states in their execution (e.g., to fix configuration 

errors) or rerun from the same point many times (e.g., as a means of distributing 

dynamic content or circulating a “live” system image). 

  

2. Binary Translation with Full Virtualization 

  

Depending on implementation technologies, hardware virtualization can be 

classified into two cate-gories: full virtualization and host-based virtualization. 

Full virtualization does not need to modify the host OS. It relies on binary 
translation to trap and to virtualize the execution of certain sensitive, 

nonvirtualizable instructions. The guest OSes and their applications consist of 

noncritical and critical instructions. In a host-based system, both a host OS and a 

guest OS are used. A virtuali-zation software layer is built between the host OS 

and guest OS. These two classes of VM architec-ture are introduced next. 

2.1 Full Virtualization 

With full virtualization, noncritical instructions run on the hardware directly while 

critical instructions are discovered and replaced with traps into the VMM to be 

emulated by software. Both the hypervisor and VMM approaches are considered 

full virtualization. Why are only critical instructions trapped into the VMM? This 

is because binary translation can incur a large performance overhead. Noncritical 

instructions do not control hardware or threaten the security of the system, but 

critical instructions do. Therefore, running noncritical instructions on hardware not 

only can promote efficiency, but also can ensure system security. 

  

2.2 Binary Translation of Guest OS Requests Using a VMM 

  

This approach was implemented by VMware and many other software companies. 

As shown in Figure 3.6, VMware puts the VMM at Ring 0 and the guest OS at 

Ring 1. The VMM scans the instruction stream and identifies the privileged, 

control- and behavior-sensitive instructions. When these instructions are identified, 

they are trapped into the VMM, which emulates the behavior of these instructions. 

The method used in this emulation is called binary translation. Therefore, full vir-
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tualization combines binary translation and direct execution. The guest OS is 

completely decoupled from the underlying hardware. Consequently, the guest OS 

is unaware that it is being virtualized. 

  

The performance of full virtualization may not be ideal, because it involves 

binary translation which is rather time-consuming. In particular, the full 

virtualization of I/O-intensive applications is a really a big challenge. Binary 

translation employs a code cache to store translated hot instructions to improve 

performance, but it increases the cost of memory usage. At the time of this writing, 

the performance of full virtualization on the x86 architecture is typically 80 percent 

to 97 percent that of the host machine. 

  

2.3 Host-Based Virtualization 

  

An alternative VM architecture is to install a virtualization layer on top of the host 

OS. This host OS is still responsible for managing the hardware. The guest OSes 

are installed and run on top of the virtualization layer. Dedicated applications may 

run on the VMs. Certainly, some other applications 

 

can also run with the host OS directly. This host-based architecture has some 

distinct advantages, as enumerated next. First, the user can install this VM 
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architecture without modifying the host OS.  The virtualizing software can rely on 

the host OS to provide device drivers and other low-level services. This will 

simplify the VM design and ease its deployment. 

  

Second, the host-based approach appeals to many host machine configurations. 

Compared to the hypervisor/VMM architecture, the performance of the host-based 

architecture may also be low. When an application requests hardware access, it 

involves four layers of mapping which downgrades performance significantly. 

When the ISA of a guest OS is different from the ISA of the underlying hardware, 

binary translation must be adopted. Although the host-based architecture has 

flexibility, the performance is too low to be useful in practice. 

  

3. Para-Virtualization with Compiler Support 

  

Para-virtualization needs to modify the guest operating systems. A para-

virtualized VM provides special APIs requiring substantial OS modifications in 

user applications. Performance degradation is a critical issue of a virtualized 

system. No one wants to use a VM if it is much slower than using a physical 

machine. The virtualization layer can be inserted at different positions in a machine 

soft-ware stack. However, para-virtualization attempts to reduce the virtualization 

overhead, and thus improve performance by modifying only the guest OS kernel. 

  

Figure 3.7 illustrates the concept of a paravirtualized VM architecture. The guest 

operating systems are para-virtualized. They are assisted by an intelligent compiler 

to replace the nonvirtualizable OS instructions by hypercalls as illustrated in Figure 

3.8. The traditional x86 processor offers four instruction execution rings: Rings 0, 

1, 2, and 3. The lower the ring number, the higher the privilege of instruction being 

executed. The OS is responsible for managing the hardware and the privileged 

instructions to execute at Ring 0, while user-level applications run at Ring 3. The 

best example of para-virtualization is the KVM to be described below. 

  

3.1 Para-Virtualization Architecture 

  

When the x86 processor is virtualized, a virtualization layer is inserted between the 

hardware and the OS. According to the x86 ring definition, the virtualization layer 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 
 

CCS335 CLOUD COMPUTING 

 

should also be installed at Ring 0. Different instructions at Ring 0 may cause some 

problems. In Figure 3.8, we show that para-virtualization replaces nonvirtualizable 

instructions with hypercalls that communicate directly with the hypervisor or 

VMM. However, when the guest OS kernel is modified for virtualization, it can no 

longer run on the hardware directly. 
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Although para-virtualization reduces the overhead, it has incurred other 

problems. First, its compatibility and portability may be in doubt, because it must 

support the unmodified OS as well. Second, the cost of maintaining para-

virtualized OSes is high, because they may require deep OS kernel modifications. 

Finally, the performance advantage of para-virtualization varies greatly due to 

workload variations. Compared with full virtualization, para-virtualization is 

relatively easy and more practical. The main problem in full virtualization is its 

low performance in binary translation. To speed up binary translation is difficult. 

Therefore, many virtualization products employ the para-virtualization 

architecture. The popular Xen, KVM, and VMware ESX are good examples. 

  

  

3.2 KVM (Kernel-Based VM) 

This is a Linux para-virtualization system—a part of the Linux version 2.6.20 

kernel. Memory management and scheduling activities are carried out by the 

existing Linux kernel. The KVM does the rest, which makes it simpler than the 

hypervisor that controls the entire machine. KVM is a hardware-assisted para-

virtualization tool, which improves performance and supports unmodified guest 

OSes such as Windows, Linux, Solaris, and other UNIX variants. 

  

3.3 Para-Virtualization with Compiler Support 

  

Unlike the full virtualization architecture which intercepts and emulates privileged 

and sensitive instructions at runtime, para-virtualization handles these instructions 

at compile time. The guest OS kernel is modified to replace the privileged and 

sensitive instructions with hypercalls to the hypervi-sor or VMM. Xen assumes 

such a para-virtualization architecture. 

  

The guest OS running in a guest domain may run at Ring 1 instead of at Ring 0. 

This implies that the guest OS may not be able to execute some privileged and 

sensitive instructions. The privileged instructions are implemented by hypercalls to 

the hypervisor. After replacing the instructions with hypercalls, the modified guest 

OS emulates the behavior of the original guest OS. On an UNIX system, a system 

call involves an interrupt or service routine. The hypercalls apply a dedicated 

service routine in Xen. 

 


