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P, NP AND NP-COMPLETE PROBLEMS 

Problems that can be solved in polynomial time are called tractable, and problems that 

cannot be solved in polynomial time are called intractable. 

There are several reasons for intractability. 

 
 First, we cannot solve arbitrary instances of intractable problems in a 

reasonable amount of time unless such instances are verysmall. 

 Second, although there might be a huge difference between the running 

times in O(p(n)) for polynomials of drastically different degrees. where 

p(n) is a polynomial of the problem’s input sizen. 

 Third, polynomial functions possess many convenient properties; in 

particular, both the sum and composition of two polynomials are always 

polynomialstoo. 

 Fourth, the choice of this class has led to a development of an extensive 

theory called computational complexity. 

 
Definition: Class P is a class of decision problems that can be solved in polynomial time by 

deterministic algorithms. This class of problems is called polynomial class. 

 Problems that can be solved in polynomial time as the set that computer science 

theoreticians call P. A more formal definition includes in P only decision problems, 

which are problems with yes/noanswers. 

 TheclassofdecisionproblemsthataresolvableinO(p(n))polynomialtime,wherep(n)is 

a polynomial of problem’s input size n 

Examples: 

 Searching 

 Elementuniqueness 

 Graph connectivity 

 Graph acyclicity 

 Primality testing (finally proved in2002) 

 The restriction of P to decision problems can be justified by the followingreasons. 

 First, it is sensible to exclude problems not solvable in polynomial time 

because of their exponentially large output. e.g., generating subsets of a 

given set or all the permutations of n distinctitems. 

 Second, many important problems that are not decision problems in 
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their most natural formulation can be reduced to a series of decision 

problems that are easier to study. For example, instead of asking about the 

minimum number of colors needed to color the vertices of a graph so that 

no two adjacent vertices are colored the same color. Coloring of the graph’s 

vertices with no more than m colors for m = 1, 2, (The latter is called the 

m-coloringproblem.) 

 So, every decision problem can not be solved in polynomial time. Some 

decision problems cannot be solved at all by any algorithm. Such problems 

are called undecidable, as opposed to decidable problems that can be 

solved by an algorithm (Halting problem). 

 Non polynomial-time algorithm: There are many important problems, however, for 

which no polynomial-time algorithm has been found. 

 Hamiltonian circuit problem: Determine whether a given graph has a 

Hamiltonian circuit—a path that starts and ends at the same vertex and 

passes through all the other vertices exactly once. 

 Traveling salesman problem: Find the shortest tour through n cities with 

known positive integer distances between them (find the shortest 

Hamiltonian circuit in a complete graph with positive integer r weights). 

 Knapsack problem: Find the most valuable subset of n items of given 

positive integer weights and values that fit into a knapsack of a given 

positive integer capacity. 

 Partition problem: Given n positive integers, determine whether it is 

possible to partition them into two disjoint subsets with the same sum. 

 Bin-packing problem: Given n items whose sizes are positive rational 

numbers not larger than 1, put them into the smallest number of bins of 

size1. 

 Graph-coloring problem: For a given graph, find its chromatic number, 

which is the smallest number of colors that need to be assigned to the 

graph’s vertices so that no two adjacent vertices are assigned the same 

color. 

 Integer linear programming problem: Find the maximum (or minimum) 

value of a linear function of several integer-valued variables subject to a 

finite set of constraints in the form of linear equalities and inequalities. 
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Definition: A nondeterministic algorithm is a two-stage procedure that takes as its input an 

instance I of a decision problem and does the following. 

1. Nondeterministic (“guessing”) stage: An arbitrary string S is generated that can be 

thought of as a candidate solution to the giveninstance. 

2. Deterministic (“verification”) stage: A deterministic algorithm takes both I and S as 

its input and outputs yes if S represents a solution to instance I. (If S is not a solution to 

instance I , the algorithm either returns no or is allowed not to halt atall.) 

Finally, a nondeterministic algorithm is said to be nondeterministic polynomial if the time 

efficiency of its verification stage is polynomial. 

 
 

Definition: Class NP is the class of decision problems that can be solved by nondeterministic 

polynomial algorithms. This class of problems is called nondeterministic polynomial. 

Most decision problems are in NP. First of all, this class includes all the problems in P: 

P ⊆ NP 

 
This is true because, if a problem is in P, we can use the deterministic polynomial time 

algorithm that solves it in the verification-stage of a nondeterministic algorithm that simply 

ignores string S generated in its nondeterministic (“guessing”) stage. But NP also contains the 

Hamiltonian circuit problem, the partition problem, decision versions of the traveling 

salesman, the knapsack, graph coloring, and many hundreds of other difficult combinatorial 

optimization. The halting problem, on the other hand, is among the rare examples of decision 

problems that are known not to be in NP. 

Note that P = NP would imply that each of many hundreds of difficult combinatorial 

decision problems can be solved by a polynomial-time algorithm. 

 
Definition: A decision problem D1 is said to be polynomially reducible to a decision problem 

D2, if there exists a function t that transforms instances of D1 to instances of D2 such that: 

 
1. t maps all yes instances of D1 to yes instances of D2 and all no instances of D1 to 

no instances ofD2. 

2. t is computable by a polynomial time algorithm. 

 
 

This definition immediately implies that if a problem D1 is polynomially reducible to 

some problemD2 that can be solved in polynomial time, then problem D1 can also be solved 

in polynomial time 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY 

 

 

 

 

Definition: A decision problem D is said to be NP-complete if it is hard as any problem in NP. 

 
1. It belongs to class NP 

2. Every problem in NP is polynomially reducible toD 

 

 
The fact that closely related decision problems are polynomially reducible to each other is not 

very surprising. For example, let us prove that the Hamiltonian circuit problem is 

polynomially reducible to the decision version of the traveling salesman problem. 

 
Theorem: A decision problem is said to be NP-complete if it is hard as any problem in NP. 

 
 

Proof: Let us prove that the Hamiltonian circuit problem is polynomially reducible to the 

decision version of the traveling salesman problem. 

We can map a graph G of a given instance of the Hamiltonian circuit problem to a 

complete weighted graph G' representing an instance of the traveling salesman problem by 

assigning 1 as the weight to each edge in G and adding an edge of weight 2 between any pair 

of nonadjacent vertices in G. As the upper bound m on the Hamiltonian circuit length, we take 

m = n, where n is the number of vertices in G (and G' ). Obviously, this transformation can be 

done in polynomialtime. 

Let G be a yes instance of the Hamiltonian circuit problem. Then G has a Hamiltonian 

circuit, and its image in G' will have length n, making the image a yes instance of the decision 

traveling salesman problem. 

Conversely, if we have a Hamiltonian circuit of the length not larger than n in G', then 

its length must be exactly n and hence the circuit must be made up of edges present in G, 

making the inverse image of the yes instance of the decision traveling salesman problem be a 

yes instance of the Hamiltonian circuitproblem. 

This completes the proof. 

 

 
Theorem: State and prove Cook’s 

theorem. 

Prove that CNF-sat is NP-complete. 

Satisfiability of boolean formula for three conjuctive normal form is NP-Complete. 

NP problems obtained by polynomial-time reductions from a NP-complete 

problem Proof: The notion of NP-completeness requires, however, polynomial reducibility of 

all problems in NP, both known and unknown, to the problem in question. Given the 

bewildering variety of decision problems, it is nothing short of amazing that specific examples 
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of NP-complete problems have been actually found. 

Nevertheless, this mathematical feat was accomplished independently by Stephen 

Cook in the United States and Leonid Levin in the former Soviet Union. In his 1971 paper,  

Cook [Coo71] showed that the so-called CNF-satisfiability problem is NPcomplete. 

1 2 3 ̅1 2 ̅ ̅3 1V̅2V̅3 ̅1V 2 ̅1V̅2V̅3 (1V̅ 2V̅ 3)▲ (̅1V 2)▲ (̅1V̅ 2V̅ 3) 
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The CNF-satisfiability problem deals with boolean expressions. Each boolean 

expression can be represented in conjunctive normal form, such as the following expression 

involving   three   boolean   variables   x1,   x2,   and   x3   and   their   negations   denoted 1̅ ,   ̅2, 

and 3̅ respectively: 

 
The CNF-satisfiability problem asks whether or not one can assign values true and 

false to variables of a given boolean expression in its CNF form to make the entire expression 

true. (It is easy to see that this can be done for the above formula: if x1 = true, x2 = true, and x3 

= false, the entire expression is true.) 

Since the Cook-Levin discovery of the first known NP-complete problems, computer 

scientists have found many hundreds, if not thousands, of other examples. In particular, the 

well- known problems (or their decision versions) mentioned above—Hamiltonian circuit, 

traveling salesman, partition, bin packing, and graph coloring—are all NP-complete. It is 

known, however, that if P != NP there must exist NP problems that neither are in P nor are 

NP-complete. 

 
Showing that a decision problem is NP-complete can be done in two steps. 

1. First, one needs to show that the problem in question is in NP; i.e., a randomly 

generated string can be checked in polynomial time to determine whether or not it 

represents a solution to the problem. Typically, this step is easy. 
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2. The second step is to show that every problem in NP is reducible to the problem in 

question in polynomial time. Because of the transitivity of polynomial reduction, this 

step can be done by showing that a known NP-complete problem can be transformed 

to the problem in question in polynomial ime. 

The definition of NP-completeness immediately implies that if there exists a 

deterministic polynomial-time algorithm for just one NP-complete problem, then every 

problem in NP can be solved in polynomial time by a deterministic algorithm, and hence P = 

NP. 

 

 

 

 

 

 

 

 

 

 

 

 

 


