2.3 Permutation and Combination

The process of selecting things is called combination and that of arranging things is called permutation.

Examples of combinations and permutations:

(i) Formation of a team from a number of players.
(ii) Formation of a 3 member committee from 10 members.
(iii) Arrangement of books on a shelf.
(iv) Formation of word with the given letters.

Permutation:

Each of the different arrangements which can be made by taking some or all of a number of things at a time is called a permutation.

The number of permutations of " n " things taken " r " at a time is denoted by $n P_{r}$

Examples:

Bryate optmaza outcprex
$6 P_{2}$ means the number of permutations of 6 things taken 2 at a time.

Formulae:

(i) $n P_{r}=\mathrm{n}(n-1)(n-2) \ldots(n-r+1)$
(ii) The number of permutations of " n " things taken all at a time is

$$
\begin{aligned}
& n P_{n}=\mathrm{n}(n-1)(n-2) \ldots .3 \cdot 2 \cdot 1 \\
& \Rightarrow n P_{n}=\mathrm{n}!
\end{aligned}
$$

Problems based on Permutations:

1. In how many ways can 6 persons occupy 3 vacant seats?

Solution:

Given $n=6, r=3$

Total number of ways $=n P_{r}=6 P_{3}$ ways
2. How many permutations of the letters ABCDEFGH contain the string

ABC.

Solution:

Given $n=6$
Obscivg opinke otuspREAD

No of arrangements $=n P_{r}=6 P_{6}=6$! Ways

$$
=720 \text { ways }
$$

3. In how many ways can letters of the word "INDIA" be arranged.

Solution:

The word INDIA contains 5 letters of which 2 are I's.

The number of word possible $=\frac{5!}{2!}=\frac{5 \times 4 \times 3 \times 2 \times 1}{2 \times 1}$

$$
=60 \text { ways }
$$

4. There are 6 books on Economics, 3 on Commerce and 2 on History. In how many ways can these be placed on a shelf if books on the same subject are to be together.

Solution:

6 Economics books can be arranged in $6 P_{6}$ ways or 6 ! Ways.

3 Commerce books can be arranged in $3 P_{3}$ ways or 3 ! Ways.

2 History books can be arranged in $2 P_{2}$ ways or 2 ! Ways.

The three books can be arranged in $3 P_{3}$ ways

The total number of required arrangements

$$
=6!\times 3!\times 2!\times 3!\text { Ways }
$$

$$
=51840 \text { ways }
$$

5. Out of $\mathbf{7}$ consonants and 4 vowels, how many words of 3 consonants and 2 vowels can be formed?

Solution:

Number of ways of selecting 3 consonants from $7={ }^{7} \mathrm{C}_{3}$

Number of ways of selecting 2 vowels from $4={ }^{4} \mathrm{C}_{2}$

Number of ways of selecting 3 consonants from 7 and 2 vowels from 4
$={ }^{7} \mathrm{C}_{3} \times{ }^{4} \mathrm{C}_{2}$

$$
=\frac{7 \times 6 \times 5}{3 \times 2 \times 1} \times \frac{4 \times 3}{2 \times 1}=210
$$

6. Find the number of distinct permutations that can be formed from all the

letters of each word (i) RADAR (ii) UNUSUAL

Solution:

The word contains 5 letters of which 2 are A's and 2 are R's.

The number of possible words $=\frac{5!}{2!2!}=30$
(ii) The word contains 7 letters of which 3 U's are there

The number of possible words $=\frac{7!}{3!}=40$
7. Find the value of n if $\boldsymbol{n P} \mathbf{P}_{2}=\mathbf{2 0}$

Solution:

We know that $n P_{r}=\frac{n!}{(n-r)!}$

$$
\begin{aligned}
& n P_{2}=\frac{n!}{(n-2)!}=\frac{n(n-1)(n-2)!}{(n-2)!} \\
& \Rightarrow n(n-1)=20 \\
& \Rightarrow n=20 \text { (or) } n-1=20 \\
& \Rightarrow n=21
\end{aligned}
$$

Combinations:

Each of the different groups or selections which can be made by taking some or all of a number of things at a time is called a combination.

The number of combinations of " n " things taken " r " at a time is denoted by $n C_{r}$.

Formula:

$$
n C_{r}=\frac{n!}{r!(n-r)!}
$$

Problems based on Combinations:

1. In how many ways can 5 persons be selected from amongst 10 persons?

Solution:

Desgive optlinge outuprede

The selection can be done in $10 C_{5}$ ways.

$$
\begin{aligned}
& =\frac{10 \times 9 \times 8 \times 7 \times 6}{1 \times 2 \times 3 \times 4 \times 5} \\
= & 252 \text { ways }
\end{aligned}
$$

2. How many ways are there to select five players from 10 member tennis

 team to make a trip to match to another school.
Solution:

5 members can be selected from 10 members in $10 C_{5}$ ways.
Now $10 C_{5}=\frac{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{5 \times 4 \times 3 \times 2 \times 1}$

$$
=252 \text { ways }
$$

3. Find the number of diagonals that can be drawn by joining the angular

 points of a heptagon.
Solution:

A heptagon has seven angular points and seven sides.

The join of two angular points is either a side or a diagonal.

The number of lines joining the angular points

But the number of sides $=7$

Hence the number of diagonals $=21-7=14$

4. A team of 11 players is to be chosen from 15 members . In how many ways

 can this be done if (i)one particular player is always included? (ii) Two such players have always to be included?
Solution:

(i) Let one player be fixed.

The remaining players are 14 .

Out of these 14 players, we have to select 10 players in $14 C_{10}$ ways.

$$
14 C_{10}=\frac{n!}{r!(n-r)!}=\frac{14!}{10!(14-10)!}=1001 \text { ways. }
$$

(ii) Let 2 players be fixed.

The remaining players are 13.

Out of 13 players, we have to select 9 players in $13 C_{9}$ ways.

$$
13 C_{9}=\frac{n!}{r!(n-r)!}=\frac{13!}{9!(13-9)!}=715 \text { ways. }
$$

5. If $n C_{5}=20 n C_{4}$, find the value of n.

Solution:

Given $n C_{5}=20 n C_{4}$

$$
\frac{n!}{5!(n-5)!}=\frac{20 n!}{4!(n-4)!}
$$

$$
\begin{aligned}
& \Rightarrow(n-4)!4!=20 \times(n-5)!5! \\
& \Rightarrow(n-4-1)!(n-4) 4!=20 \times(n-5)!5! \\
& \Rightarrow(n-5)!(n-4) 4!=20 \times(n-5)!4!\times 5 \\
& \Rightarrow(n-4)=100 \\
& \Rightarrow n=100+4=104 \\
& \Rightarrow n=104
\end{aligned}
$$

6. A question paper has 3 parts, Part A, Part B and Part C having 12, 4 and 4 questions respectively. A student has to answer 10 questions from Part A and 5 questions from Part B and Part C put together selecting atleast 2 from each one of these two parts. In how many ways the selection of questions can be done.

Solution:

12	Obsyyy	4	4
Part A	Part B	Part C	
10	2	3	
10	3	2	

The selection of questions can be done in
$12 C_{10} \times 4 C_{2} \times 4 C_{3}+12 C_{10} \times 4 C_{3} \times 4 C_{2}$

$$
=3168 \text { ways }
$$

