
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

EXCEPTION HANDLING

• In a language without exception handling

– When an exception occurs, control goes to the operating system, where a message

is displayed and the program is terminated

• In a language with exception handling

– Programs are allowed to trap some exceptions, thereby providing the possibility of

fixing the problem and continuing

Basic Concepts

• Many languages allow programs to trap input/output errors (including EOF)

• An exception is any unusual event, either erroneous or not, detectable by either hardware

or software, that may require special processing

• The special processing that may be required after detection of an exception is called

exception handling

• The exception handling code unit is called an exception handler

Exception Handling Alternatives

• An exception is raised when its associated event occurs

• A language that does not have exception handling capabilities can still define, detect, raise,

and handle exceptions (user defined, software detected)

• Alternatives:

– Send an auxiliary parameter or use the return value to indicate the return status of

a subprogram

– Pass a label parameter to all subprograms (error return is to the passed label)

– Pass an exception handling subprogram to all subprograms

Advantages of Built-in Exception Handling

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

• Error detection code is tedious to write and it clutters the program

• Exception handling encourages programmers to consider many different possible errors

• Exception propagation allows a high level of reuse of exception handling code

Design Issues

• How and where are exception handlers specified and what is their scope?

• How is an exception occurrence bound to an exception handler?

• Can information about the exception be passed to the handler?

• Where does execution continue, if at all, after an exception handler completes its

execution? (continuation vs. resumption)

• Is some form of finalization provided?

• How are user-defined exceptions specified?

• Should there be default exception handlers for programs that do not provide their own?

• Can predefined exceptions be explicitly raised?

• Are hardware-detectable errors treated as exceptions that can be handled?

• Are there any predefined exceptions?

• How can exceptions be disabled, if at all?

Exception Handling in Ada

• The frame of an exception handler in Ada is either a subprogram body, a package body, a

task, or a block

• Because exception handlers are usually local to the code in which the exception can be

raised, they do not have parameters

Ada Exception Handlers

• Handler form:

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

 when exception_choice{|exception_choice} => statement_sequence

 ...

 [when others =>

 statement_sequence]

 exception_choice form:

 exception_name | others

• Handlers are placed at the end of the block or unit in which they occur

Binding Exceptions to Handlers

• If the block or unit in which an exception is raised does not have a handler for that

exception, the exception is propagated elsewhere to be handled

– Procedures - propagate it to the caller

– Blocks - propagate it to the scope in which it appears

– Package body - propagate it to the declaration part of the unit that declared the

package (if it is a library unit, the program is terminated)

– Task - no propagation; if it has a handler, execute it; in either case, mark it

"completed"

• The block or unit that raises an exception but does not handle it is always terminated (also

any block or unit to which it is propagated that does not handle it)

Other Design Choices

• User-defined Exceptions form:

 exception_name_list : exception;

• Raising Exceptions form:

 raise [exception_name]

– (the exception name is not required if it is in a handler--in this case, it propagates

the same exception)

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

• Exception conditions can be disabled with:

 pragma SUPPRESS(exception_list)

Predefined Exceptions

• Constraint_Error - index constraints, range constraints, etc.

• Program_Error - call to a subprogram whose body has not been elaborated

• Storage_Error - system runs out of heap

• Tasking_Error - an error associated with tasks

Evaluation

• The Ada design for exception handling embodies the state-of-the-art in language design in

1980

• Ada was the only widely used language with exception handling until it was added to C++

• The propagation model allows exceptions to be propagated to an outer scope in which the

exception would not be visible

• It is not always possible to determine the origin of propagated exceptions

• Exception handling is inadequate for tasks

Exception Handling in C++

• Added to C++ in 1990

• Design is based on that of CLU, Ada, and ML

C++ Exception Handlers

• Exception Handlers Form:

 try {

 -- code that is expected to raise an exception

 }

 catch (formal parameter) {

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

 -- handler code

 }

 ...

 catch (formal parameter) {

 -- handler code

 }

The catch Function

• catch is the name of all handlers--it is an overloaded name, so the formal parameter of each

must be unique

• The formal parameter need not have a variable

– It can be simply a type name to distinguish the handler it is in from others

• The formal parameter can be used to transfer information to the handler

• The formal parameter can be an ellipsis, in which case it handles all exceptions not yet

handled

Throwing Exceptions

• Exceptions are all raised explicitly by the statement:

 throw [expression];

• The brackets are metasymbols

• A throw without an operand can only appear in a handler; when it appears, it simply re-

raises the exception, which is then handled elsewhere

• The type of the expression disambiguates the intended handler

Unhandled Exceptions

• An unhandled exception is propagated to the caller of the function in which it is raised

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

• This propagation continues to the main function

• If no handler is found, the default handler is called

• After a handler completes its execution, control flows to the first statement after the last

handler in the sequence of handlers of which it is an element

• Other design choices

• All exceptions are user-defined

• Exceptions are neither specified nor declared

• The default handler, unexpected, simply terminates the program; unexpected can

be redefined by the user

• Functions can list the exceptions they may raise

• Without a specification, a function can raise any exception (the throw clause)

Evaluation

• It is odd that exceptions are not named and that hardware- and system software-detectable

exceptions cannot be handled

• Binding exceptions to handlers through the type of the parameter certainly does not

promote readability

Exception Handling in Java

• Based on that of C++, but more in line with OOP philosophy

• All exceptions are objects of classes that are descendants of the Throwable class

Classes of Exceptions

• The Java library includes two subclasses of Throwable :

– Error

• Thrown by the Java interpreter for events such as heap overflow

• Never handled by user programs

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

– Exception

• User-defined exceptions are usually subclasses of this

• Has two predefined subclasses, IOException and RuntimeException (e.g.,

ArrayIndexOutOfBoundsException and NullPointerException

Java Exception Handlers

• Like those of C++, except every catch requires a named parameter and all parameters must

be descendants of Throwable

• Syntax of try clause is exactly that of C++

• Exceptions are thrown with throw, as in C++, but often the throw includes the new operator

to create the object, as in: throw new MyException();

Binding Exceptions to Handlers

• Binding an exception to a handler is simpler in Java than it is in C++

– An exception is bound to the first handler with a parameter is the same class as the

thrown object or an ancestor of it

• An exception can be handled and rethrown by including a throw in the handler (a handler

could also throw a different exception)

• If no handler is found in the try construct, the search is continued in the nearest enclosing

try construct, etc.

• If no handler is found in the method, the exception is propagated to the method’s caller

• If no handler is found (all the way to main), the program is terminated

• To insure that all exceptions are caught, a handler can be included in any try construct that

catches all exceptions

– Simply use an Exception class parameter

– Of course, it must be the last in the try construct

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

Checked and Unchecked Exceptions

• The Java throws clause is quite different from the throw clause of C++

• Exceptions of class Error and RunTimeException and all of their descendants are called

unchecked exceptions; all other exceptions are called checked exceptions

• Checked exceptions that may be thrown by a method must be either:

– Listed in the throws clause, or

– Handled in the method

Other Design Choices

• A method cannot declare more exceptions in its throws clause than the method it overrides

• A method that calls a method that lists a particular checked exception in its throws clause

has three alternatives for dealing with that exception:

– Catch and handle the exception

– Catch the exception and throw an exception that is listed in its own throws clause

– Declare it in its throws clause and do not handle it

The finally Clause

• Can appear at the end of a try construct

• Form:

finally {

...

}

• Purpose: To specify code that is to be executed, regardless of what happens in the try

construct

Example

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

• A try construct with a finally clause can be used outside exception handling

 try {

 for (index = 0; index < 100; index++) {

 …

 if (…) {

 return;

 } //** end of if

 } //** end of try clause

 finally {

 …

 } //** end of try construct

Assertions

• Statements in the program declaring a boolean expression regarding the current state of the

computation

• When evaluated to true nothing happens

• When evaluated to false an AssertionError exception is thrown

• Can be disabled during runtime without program modification or recompilation

• Two forms

– assert condition;

– assert condition: expression;

Evaluation

• The types of exceptions makes more sense than in the case of C++

• The throws clause is better than that of C++ (The throw clause in C++ says little to the

programmer)

• The finally clause is often useful

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

• The Java interpreter throws a variety of exceptions that can be handled by user programs

Introduction to Event Handling

• An event is a notification that something specific has occurred, such as a mouse click on a

graphical button

• The event handler is a segment of code that is executed in response to an event

Java Swing GUI Components

• Text box is an object of class JTextField

• Radio button is an object of class JRadioButton

• Applet’s display is a frame, a multilayered structure

• Content pane is one layer, where applets put output

• GUI components can be placed in a frame

• Layout manager objects are used to control the placement of components

The Java Event Model

• User interactions with GUI components create events that can be caught by event handlers,

called event listeners

• An event generator tells a listener of an event by sending a message

• An interface is used to make event-handling methods conform to a standard protocol

• A class that implements a listener must implement an interface for the listener

The Java Event Model (continued)

• One class of events is ItemEvent, which is associated with the event of clicking a checkbox,

a radio button, or a list item

• The ItemListener interface prescribes a method, itemStateChanged, which is a handler for

ItemEvent events

• The listener is created with addItemListener

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

Event Handling in C#

• Event handling in C# (and the other .NET languages) is similar to that in Java

• .NET has two approaches, Windows Forms and Windows Presentation Foundation—we

cover only the former (which is the original approach)

• An application subclasses the Form predefined class (defined in System.Windows.Forms)

• There is no need to create a frame or panel in which to place the GUI components

• Label objects are used to place text in the window

• Radio buttons are objects of the RadioButton class

Event Handling in C# (continued)

• Components are positioned by assigning a new Point object to the Location property of the

component

 private RadioButton plain = new RadioButton();

 plain.Location = new Point(100, 300);

 plain.Text = ″Plain″;

 controls.Add(plain);

• All C# event handlers have the same protocol, the return type is void and the two

parameters are of types object and EventArgs

Event Handling in C# (continued)

• An event handler can have any name

• A radio button is tested with the Boolean Checked property of the button

 private void rb_CheckedChanged (object o,

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

 EventArgs e) {

 if (plain.Checked) …

 ...

 }

• To register an event, a new EventHandler object must be created and added to the

predefined delegate for the event

• When a radio button changes from unchecked to checked, the CheckedChanged event is

raised

• The associated delegate is referenced by the name of the event

• If the handler was named rb_CheckedChanged, we could register it on the radio button

named plain with:

 plain.CheckedChanged +=

 new EventHandler (rb_CheckedChanged);

