2.3 LATIN SQUARE:

Steps in constructing Latin Square

Step:1

Square the Grand total (T) and divide it by the number of observations (N).

i.e), Find
$$\frac{T^2}{N}$$
 which is called the correction factor (C.F)

Step:2

Add the squares of the individual observations (X_i 's) and substract the C.F from it to get the total sum of squares. i.e)., Find Total sum of squares TSS

i.e)., TSS =
$$\sum_{i} (X_i)^2 - \frac{T^2}{N}$$

Step:3

Add the squares of the row sums (R_i) divide it by the number of items in a row and substract the C.F from the result to get the row sum of squares.

Row sum of squares
$$SSR = \frac{(\sum R_i)^2}{n_1} - C.F$$

Where n_1 is the number of items in a row.

Step:4

Add the squares of the columns sums (C_i) divide it by the number of items and substract the C.F from the result to get the column sum of squares.

Column sum of squares
$$SSC = \frac{(\sum c_j)^2}{n_2} - C.F$$

Where n_2 is the number of items in a column.

Step:5

Sum of the squares of the treatment sums (T_i) divide it by the number of treatments and substract the C.F from it to get the treatment sum of squares, i.e., Treatment sum of squares.

$$SST = \frac{(\sum T_i)^2}{n_i} - C.F$$

Where n_i is the number of treatments.

Step:6

Substract the sum obtained in steps 3, 4, and 5 from 2 we get residual.

i.e)., Residual
$$SSE = TSS - (SSR + SSC + SST)$$

Step:7

Prepare the ANOVA table using all these and calculate the various mean squares as follows.

Source of	Sum of	Degrees of	Mean Square	F - Ratio
variation	Degrees	Freedom		
Between	SSR	n-1	$MSR = \frac{SSR}{n-1}$	$F_R = \frac{MSR}{MSE}$ if MSR>
Rows			n-1	MSE MSE
		ENGINE	RING	$F_R = \frac{MSE}{MSR}$ if MSE>
	, O'		4.	MSR
Between	SSC	n - 1	$MSC = \frac{SSC}{n-1}$	$F_c = \frac{MSC}{MSE}$ if MSC>
Columns	1 4 //	24		MSE
	13/1	15031		$F_c = \frac{MSE}{MSC}$ if MSE>
		100		MSC
Treatments	SST	n - 1	$MST = \frac{SST}{n-1}$	$F_T = \frac{MST}{MSE}$ if MST>
	14 1		TAZIN /	MSE
	1 = 1		AAJJ /	$F_T = \frac{MSE}{MST}$ if MSE>
				MST
Residual or	SSE	(n-1)(n-2)	MSE =	4
Error	~ _		SSE	
		1.	(n-1)(n-2)	

Step:8

Compute the F-ratio and find out whether the differences are significant or not according to the given level of significance.

1. Set up the analysis of variance for the following results of a Latin square design.

A	C	В	D
12	19	10	8
C	В	D	A
18	12	6	7
В	D	A	C
22	10	5	21
C	A	C	В
12	7	27	17

Solution:

Set the null hypothesis H_0 : There is no significance difference between the rows, columns and treatments.

Table I (To find TSS, SSR and SSC)

	\mathcal{C}_1	C_2	\mathcal{C}_3	C_4	Row	$R_i^2/$
					Total	/ 4
					R_i	
R_1	12	19	10	8	49	600.25
R_2	18	12	6	7	43	462.25
R_3	22	10	5	21	58	841
R_4	12	7	27	17	63	992.25
Column	64	48	48	53	213 (T)	2895.75
Total		1/4/				$\sum R_i^2$
C_j		7,0 /				$\lfloor L \rfloor^{74}$
C_j^2	1024	576	576	702.25	2895.75	
/ /4		J / []			∇C_i^2	$\Lambda \cap \Gamma$
		9 /	12.		2 //4	I

Table II (To find SST)

	1	2	3	4	Row Total T_i	$T_i^2/4$
A	12	7	5	7	31	240.25
В	10	12	22	17	61	930.25
С	19	18	21	27	85	1806.25
D	8	6	10	12	36	324
OBSERVE OPTIMIZE OUT					$\frac{3300.75=}{\sum_{i}^{T_{i}^{2}}/4}$	

Step:1

Grand total (T) = 213

Step:2

Correction factor (C.F)=
$$\frac{T^2}{N} = \frac{(213)^2}{16} = 2835.56$$

Step:3

Sum of squares of individual observations

$$= (12)^2 + (7)^2 + (5)^2 + (7)^2 + (10)^2 + (12)^2 + (22)^2 + (17)^2 + (19)^2 + (18)^2 + (21)^2 + (27)^2 + (8)^2 + (6)^2 + (10)^2 + (12)^2$$

$$= 3483$$

Step:4

 $TSS = sum\ of\ squares\ of\ individual\ observations - C.F$

$$= \sum_{i} (X_i)^2 - \frac{T^2}{N} = 3486 - 2835.56 = 647.44$$

Step:5

Row sum of squares $SSR = \frac{(\sum R_i)^2}{4} - C.F = 2895.75 - 2835.56 = 60.19$

Step:6

Column sum of squares
$$SSC = \frac{(\sum c_j)^2}{4} - C.F = 2878.25 - 2835.56$$

= 42.69

Step:7

Sum of squares of Treatment

$$SST = \frac{(\sum T_i)^2}{n_i} - C.F = 3300.75 - 2835.56 = 465.19$$

Step:8

Residual
$$SSE = TSS - (SSR + SSC + SST)$$

= $647.44 - (60.19 + 42.69 + 465.19) = 79.37$

Step:9

Prepare the ANOVA table using all these and calculate the various mean squares as follows.

Source of	Sum of	Degrees of	Mean Square	F - Ratio
variation	Degrees	Freedom		

Between Rows	SSR=60.19	4 – 1 =3	$MSR = \frac{SSR}{n-1}$	$F_R = \frac{MSR}{MSE} = 1.52$
ROWS			=20.06	
Between	SSC=42.69	4 - 1 = 3	$MSC = \frac{SSC}{1}$	$F_c = \frac{MSC}{MSE} = 1.08$
Columns			n-1	MSE 1.00
			=14.23	
Treatments	SST=465.19	4 - 1 = 3	$MST = \frac{SST}{n-1}$	$F_T = \frac{MST}{MSE} = 11.73$
			=155.06	
Residual or	SSE=79.37	(4-1)(4-2)	MSE =	
Error		$\begin{vmatrix} (4-1)(4-2) \\ =6 \end{vmatrix}$	SSE	
			(n - 1)(n - 2)	
			=13.22	

Step: 10

d.f for (3, 6) at 5% level of significance is 4.76

Step: 11 Conclusion:

Calculated value F_c < Table value, then we accept null hypothesis.

There is no significance difference between the columns.

Calculated value F_R < Table value, then we accept null hypothesis.

There is no significance difference between the rows.

Calculated value F_T >Table value, then we reject null hypothesis.

There is a significance difference between the rows.

