
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3501 – COMPILER DESIGN

ISSUES IN THE DESIGN OF A CODE GENERATOR

1. Input to code generator

2. Target program

3. Memory management

4. Instruction selection

5. Register allocation

6. Evaluation order

Input to code generator:

• The input to the code generation consists of the intermediate representation of the source program

produced by front end, together with information in the symbol table to determine run-time addresses

of the data objects denoted by the names in the intermediate representation. Intermediate representation

can be:

• Linear representation such as postfix notation

• Three address representation such as quadruples, triples, indirect triples

• Virtual machine representation such as byte code and stack machine code

• Graphical representations such as syntax trees and DAG’s.

The Target program:

• The instruction-set architecture of the target machine has a significant impact on the difficulty of

constructing a good code generator that produces high-quality machine code.

• The most common target-machine architectures are RISC (reduced instruction set computer), CISC

(complex instruction set computer), and stack based.

• A RISC machine typically has many registers, three-address instructions, simple addressing modes, and

a relatively simple instruction-set architecture.

• In contrast, a CISC machine typically has few registers, two-address instructions, a variety of addressing

modes, several register classes, variable-length instructions, and instructions with side effects.

• In a stack-based machine, operations are done by pushing operands onto a stack and then performing

the operations on the operands at the top of the stack.

• To achieve high performance the top of the stack is typically kept in registers. Stack-based machines

almost disappeared because the stack organization was too limiting and required too many swap and

copy operations.

Memory management:

• Names in the source program are mapped to addresses of data objects in run-time memory by the front

end and code generator.

• Labels in three-address statements have to be converted to addresses of instructions.

For example,

j : goto i generates jump instruction as follows :

• if i < j, a backward jump instruction with target address equal to location of code for quadruple i is

generated.

• if i > j, the jump is forward. We must store on a list for quadruple i the location of the first machine

instruction generated for quadruple j. When i is processed, the machine locations for all instructions that

forward jumps to i are filled.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3501 – COMPILER DESIGN

Instruction selection:

• The instructions of target machine should be complete and uniform.

• Instruction speeds and machine idioms are important factors when efficiency of target program is

considered.

• The quality of the generated code is determined by its speed and size.

• For example, every three-address statement of the form x = y + z, where x, y, and z are statically

allocated, can be translated into the code sequence.

• This strategy often produces redundant loads and stores. For example, the sequence of three-address

statements.

•
would be translated into

• Here, the fourth statement is redundant since it loads a value that has just been stored, and so is the third

if a is not subsequently used.

• The quality of the generated code is usually determined by its speed and size.

Register allocation:

• Instructions involving register operands are shorter and faster than those involving operands in memory.

• The use of registers is subdivided into two subproblems:

• Register allocation - the set of variables that will reside in registers at a point in the program is selected.

• Register assignment - the specific register that a variable will reside in is picked.

Evaluation order:

• The order in which the computations are performed can affect the efficiency of the target code.

• Some computation orders require fewer registers to hold intermediate results than others.

