ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

ISSUES IN THE DESIGN OF A CODE GENERATOR
Input to code generator

Target program

Memory management

Instruction selection

Register allocation

. Evaluation order

Input to code generator:

1
2
3.
4.
5
6

The input to the code generation consists of the intermediate representation of the source program
produced by front end, together with information in the symbol table to determine run-time addresses
of the data objects denoted by the names in the intermediate representation. Intermediate representation
can be:

Linear representation such as postfix notation

Three address representation such as quadruples, triples, indirect triples

Virtual machine representation such as byte code and stack machine code

Graphical representations such as syntax trees and DAG’s.

The Target program:

The instruction-set architecture of the target machine has a significant impact on the difficulty of
constructing a good code generator that produces high-quality machine code.

The most common target-machine architectures are RISC (reduced instruction set computer), CISC
(complex instruction set computer), and stack based.

A RISC machine typically has many registers, three-address instructions, simple addressing modes, and
a relatively simple instruction-set architecture.

In contrast, a CISC machine typically has few registers, two-address instructions, a variety of addressing
modes, several register classes, variable-length instructions, and instructions with side effects.

In a stack-based machine, operations are done by pushing operands onto a stack and then performing
the operations on the operands at the top of the stack.

To achieve high performance the top of the stack is typically kept in registers. Stack-based machines
almost disappeared because the stack organization was too limiting and required too many swap and
copy operations.

Memory management:

Names in the source program are mapped to addresses of data objects in run-time memory by the front
end and code generator.
Labels in three-address statements have to be converted to addresses of instructions.

For example,
] 1 goto i generates jump instruction as follows :

if i <], a backward jump instruction with target address equal to location of code for quadruple i is
generated.

if i > |, the jump is forward. We must store on a list for quadruple i the location of the first machine
instruction generated for quadruple j. When i is processed, the machine locations for all instructions that
forward jumps to i are filled.

CS3501 — COMPILER DESIGN



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Instruction selection:
e The instructions of target machine should be complete and uniform.
e Instruction speeds and machine idioms are important factors when efficiency of target program is
considered.
e The quality of the generated code is determined by its speed and size.
e For example, every three-address statement of the form x =y + z, where X, y, and z are statically
allocated, can be translated into the code sequence.

LD RO, y // RO =y (load y into register RO)
ADD RO, RO, z // RO = RO + z (add z toRO)
ST x, RO // x = RO (store RO into x)
o This strategy often produces redundant loads and stores. For example, the sequence of three-address
statements.
a=bhb+c
d=a+e

would be translated into

LD RO, b /f RO=D
ADD RO, RO, ¢ // RO = RO + ¢
ST a, RO ff a = RO
LD RO, a /f RO = a
ADD RO, RO, @ J// RO = RO + e
ST d, RO ff d = RO

e Here, the fourth statement is redundant since it loads a value that has just been stored, and so is the third
if a is not subsequently used.
e The quality of the generated code is usually determined by its speed and size.
Register allocation:
e Instructions involving register operands are shorter and faster than those involving operands in memory.
e The use of registers is subdivided into two subproblems:
e Register allocation - the set of variables that will reside in registers at a point in the program is selected.
e Register assignment - the specific register that a variable will reside in is picked.
Evaluation order:
e The order in which the computations are performed can affect the efficiency of the target code.
e Some computation orders require fewer registers to hold intermediate results than others.

CS3501 — COMPILER DESIGN



