
Encapsulation

Encapsulation in Python

In Python, encapsulation is a method of wrapping data and functions into a single entity. For

example, A class encapsulates all the data (methods and variables). Encapsulation means the

internal representation of an object is generally hidden from outside of the object's definition.

Fig: Python Encapsulation

Need of Encapsulation

Encapsulation acts as a protective layer. We can restrict access to methods and variables from

outside, and It can prevent the data from being modified by accidental or unauthorized

modification. Encapsulation provides security by hiding the data from the outside world.

Example: Encapsulation in Python

When you create a class, it means you are implementing encapsulation. A class is an example of

encapsulation as it binds all the data members (instance variables) and methods into a single unit.

In Python, we do not have access modifiers, such as public, private, and protected. But we can

achieve encapsulation by using prefix single underscore and double underscore to control

access of variable and method within the Python program.

class Employee:

 def __init__(self, name, salary):

 # public member

 self.name = name

 # private member

 # not accessible outside of a class

https://pynative.com/python-instance-variables/

 self.__salary = salary

 def show(self):

 print("Name is ", self.name, "and salary is", self.__salary)

emp = Employee("Jessa", 40000)

emp.show()

access salary from outside of a class

print(emp.__salary)

Output:

Name is Jessa and salary is 40000

AttributeError: 'Employee' object has no attribute '__salary'

In the above example, we create a class called Employee. Within that class, we declare two

variables name and __salary. We can observe that the name variable is accessible,

but __salary is the private variable. We cannot access it from outside of class. If we try to

access it, we will get an error

Polymorphism

Polymorphism in OOP is the ability of an object to take many forms. In simple words,

polymorphism allows us to perform the same action in many different ways.

Polymorphism is taken from the Greek words Poly (many) and morphism (forms).

Polymorphism defines the ability to take different forms.

For example, The student can act as a student in college, act as a player on the ground, and as a

daughter/brother in the home. Another example in the programming language, the + operator,

acts as a concatenation and arithmetic addition.

Fig: Python Polymorphism

Read the complete guide on Polymorphism in Python.

Example: Using Polymorphism in Python

For example, In the below example, calculate_area() instance method created in both Circle and

Rectangle class. Thus, we can create a function that takes any object and calls the object's

calculate_area() method to implement polymorphism. Using this object can perform

Polymorphism with class methods is useful when we want objects to perform the same action in

different ways. In the below example, both objects calculate the area (same action) but in a

different way (different formulas)

class Circle:

 pi = 3.14

 def __init__(self, redius):

 self.radius = redius

 def calculate_area(self):

 print("Area of circle :", self.pi * self.radius * self.radius)

class Rectangle:

 def __init__(self, length, width):

 self.length = length

 self.width = width

 def calculate_area(self):

 print("Area of Rectangle :", self.length * self.width)

function

def area(shape):

 # call action

 shape.calculate_area()

create object

cir = Circle(5)

rect = Rectangle(10, 5)

call common function

area(cir)

area(rect)

Output:

Area of circle : 78.5

Area of Rectangle : 50

https://pynative.com/python-polymorphism/

