
 MC4204 MOBILE APPLICATION DEVELOPMENT

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 1

DYNAMIC LINKING

Dynamic linking, often implemented with dynamically linked libraries

(DLL), is a common way to partition applications and subsystems into

smaller portions, which can be compiled, tested, reused, managed,

deployed, and installed separately.

• Several applications can use the library in such a fashion that

only one copy of the library is needed, thus saving memory.

• Application-specific tailoring can be handled in a convenient fashion,
provided that supporting facilities exist.

• Smaller compilations and deliveries are enabled

• Composition of systems becomes more flexible, because
only a subset of all possible software can be included in a
device when
creating a device for a certain segment.

• It is easier to focus testing to some interface and
features that can be accessed using that interface.

• Library structure eases scoping of system components and
enables the creation of an explicit unit for management.

• Work allocation can be done in terms of dynamic libraries, if the
implementation is carried out using a technique that does not support
convenient mechanisms for
modularity.

STATIC VERSUS DYNAMIC DLLS

• While dynamically linked libraries are all dynamic in their nature, there
are two different implementation schemes.

• One is static linking, which most commonly means that the
library is instantiated at the starting time of a program, and
the loaded library

resides in the memory as long as the program that loaded the library

into its memory space is being executed.

• In contrast to static DLLs, dynamic DLLs, which are often also
referred to as plug-in, especially if they introduce some
special extension, can
be loaded and unloaded whenever needed, and the facilities can thus

be altered during an execution.

• The benefit of the approach is that one can introduce new features using
such libraries. For instance, in the mobile setting one can consider that
sending a message is an
operation that is similar to different message types (e.g. SMS, MMS,

email), but different implementations are needed for communicating with

the network in the correct fashion.

CHALLENGES WITH USING DLLS

1. A common risk associated with dynamic libraries is the

fragmentation of the total system into small entities that refer to each

other seemingly uncontrollably

2. Another problem is that if a dynamic library is used by only one

application, memory consumption increases due to the

infrastructure needed for management of the library.

IMPLEMENTATION TECHNIQUES

• Fundamentally, dynamically linked libraries can be
considered as components that offer a well-defined
interface for other pieces of

 MC4204 MOBILE APPLICATION DEVELOPMENT

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 2

software to access it.

• Additional information may be provided to ease their use. This is
not a necessity, however, but they can be self-contained as well, in
which case the parts of the
program that use libraries must find the corresponding information from
libraries.

• Usually, this is implemented with standard facilities and an
application programmer has few opportunities to optimize the system.

Dynamically linked libraries can be implemented in two different fashions.

1. Offset based linking

2. Signature based linking

OFFSET BASED LINKING

• Linking based on offsets is probably the most common way
to load dynamic libraries.

• The core of the approach is to add a table of function pointers to the
library file, which identifies where the different methods or procedures
exported from the dynamically

linked library are located, thus resembling the virtual function

table used in inheritance.
SIGNATURE BASED LINKING

• In contrast to offset-based linking of dynamically linked libraries,
also language- level constructs, such as class names and
method signatures, can
be used as the basis for linking.

• Then, the linking is based on loading the whole library to the
memory and then performing the linking against the actual signatures
of the functions, which must then
be present in one form or another.

