4.3 Subgroups

Define Subgroups

Let $(\mathrm{G}, *)$ be a group. Then $(\mathrm{H}, *)$ is said to be subgroup of $(\mathrm{G}, *)$ if $H \subseteq G$ and $(\mathrm{H}, *)$ itself is a group under the operation *
i.e., $(H, *)$ is said to be a subgroup of $(G, *)$ if

- $\quad e \varepsilon H$, where e is the identity in G .
- For any $a \varepsilon H, a^{-1} \varepsilon H$
- For $a, b \varepsilon H, a * b \varepsilon H$

Define Trivial and Proper Subgroups

- $(\{e\}, *)$ and $(G, *)$ are trivial subgroups of $(G, *)$.
- All other subgroups of $(\boldsymbol{G}, *)$ are called proper subgroups.

Examples of Subgroups:

- $(\mathrm{Z},+)$ is a Subgroup of $(\mathrm{Q},+)$
- $(\mathrm{Q},+)$ is a Subgroup of $(\mathrm{R},+)$
- $(\mathrm{R},+)$ is a Subgroup of $(\mathrm{C},+)$

Example of Subgroups

Find all the subgroups ($\mathbf{z 1 2 , + 1 2 \text {) }}$

Solution:

$z 12=\{0,1,2,3,4,5,6,7,8,9,10,11\}$ \square

- Let $S_{1}=\{0,6\}$
- $S_{2}=\{0,4,8\}$
- $S_{3}=\{0,3,6,9\}$
- $S_{4}=\{0,2,4,6,8\}$
- $S_{1}, S_{2}, S_{3}, S_{4}$ are proper subgroups of $(z 12,+12)$
- $(\{0\},+12)$ and $\left(z_{12},+12\right)$ are its trivial subgroup

Theorems on Subgroups:

Theorem: 1

Bryate optmaze outsphen

State and prove the necessary and sufficient condition for a subset of a group to be subgroup.

Statement:

Let $(G, *)$ be a group. H is a nonempty subset of G, then H is a subgroup of G
if and only if whenever $a, b \in H \Rightarrow a * b^{-1} \in H$ for all
$a, b \in H$
(Definition: (G, *) be a group, H nonempty subset of G . H is a subgroup of G if H itself is a group under the same binary operation *)

Proof:

Necessary Part

Let $(\mathrm{G}, *)$ be a group. H is a nonempty subset of G .
Assume that H is a subgroup of G .
By definition, $(\mathrm{H}, *)$ is a group.

So $a, b \in H \Rightarrow b^{-1} \in H$ by inverse property
$\Rightarrow a * b^{-1} \in H$ by closure property

Sufficient Part

Let $(\mathrm{G}, *)$ be a group. H is a nonempty subset of G .
Assume $a, b \in H \Rightarrow a * b^{-1} \in H \rightarrow$
Claim: H is a subgroup of
G i.e., $(\mathrm{H}, *)$ is a group.
H is nonempty so let $a \in H$

(iii) Identity

Now $a, a \in H$ by (1)
$a * a^{-1} \in H$
i.e., $e \in H$

Identity exists
(iv)Inverse

Let a $\in H$. Now by previous step $e \in H$

Now $e, a \in H$ by (1)
$\Rightarrow e * a^{-1} \in H$
$\Rightarrow e \in H$

Hence Inverse exists.

(i) Closure

Now $a, b^{-1} \in H$ by (1)
$\Rightarrow a *\left(b^{-1}\right)^{-1} \in H$
$\Rightarrow a * b \in H$

Closure is verified.
(ii) Associative
$a, b, c \in H, \boldsymbol{H} \subseteq \boldsymbol{G}, a, b, c \in G$
In G $(a * b) * c=a *(b * c)$
$\therefore \operatorname{In} \mathrm{H}(a * b) * c=a *(b * c)$
Associative is verified.
$(\mathrm{H}, *)$ be a group.

Hence H is a subgroup of G.
Hence the proof.

Theorem: 2

Prove that intersection of two subgroups of a group $(\mathbf{G}, *)$ is a subgroup of
(G, *). Also, prove that union of subgroups need not be a group.

Proof:

Let ($\mathrm{G}, *$) be a group. H and K are non - empty subgroups of (G, *). Both
H and K satisfying the following necessary conditions
Let $a, b \in H \Rightarrow a * b^{-1} \in H$

Let $a, b \in K \Rightarrow a * b^{-1} \in K$

Consider the subset $H \cap K$ of G
(i) Since H is a subgroup of G, $e \in H$

Since K is a subgroup of G, $e \in K$
$\therefore e \in H \cap K$
so, $H \cap K$ is a non - empty subset of G .
(ii) Let $\mathrm{a}, \mathrm{b} \in H \cap K$

By Sufficient condition for aSubgroup

We need to prove $a * b^{-1} \in H \cap K$
$a, b \in H$ and $a, b \in K$
$\operatorname{By}(1) a * b^{-1} \in H \cap K$
$\therefore H \cap K$ is a subgroup of $(\mathrm{G}, *)$
Hence the proof.
Now we are going to Prove that Union of two Subgroups of a group need not be a Subgroup.

Let us prove the above fact by giving counter examples

Consider $\mathrm{G}=$ set of integers under addition ($Z,+$)

$$
=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

- $\mathrm{H}=2 \mathrm{Z}=\{. .,-6,-4,-2,0,2,4,6, \ldots\}$
- $K=3 Z=\{. .,-9,-6,-3,0,3,6,9, \ldots\}$

H and K are subgroups of $(Z,+)$
$H \cup K=\{\ldots,-9,-6,-4,-3,-2,0,2,3,4,6,9, \ldots\}$
$H \cup K$ is not closed under addition.

As $2,3 \in H \cup K$ but $2+3=5 \notin H \cup K$

So $H \cup K$ is not a subgroup of $(Z,+)$.
Hence the proof.

Cyclic Group:

Define Cyclic Groups

A group $(\mathrm{G}, *)$ is said to be cyclic if there exists an element $a \in G$ such that every element of G can be written as some power of "a".
i.e., $a^{n} f$ or some integer n.

G is said to be generated by " a " (or) "a" is a generator ofG.

We write $G=<a \succ$

Examples:

The set of complex numbers $\{1,-1, i,-i\}$ under multiplication operation is a cyclic group.

There are two generators $-i$ and i as $i^{1}=1, i^{2}=-1, i^{3}=-i, i^{4}=1$ and also $(-i)^{1}=-i,(-i)^{2}=-1,(-i)^{3}=i,(-i)^{4}=1$ which covers all the elements of the group.

Hence it is a Cyclic Group.

However - 1 is not a generator.

Theorem: 1

Every Subgroup of a Cyclic group is Cyclic.

Proof:

Let H be a cyclic group generated by an element $a \in G$.
\therefore Every element in G can be expressed as a power of the element "a".
Let H be a subgroup of G .
If $H=\{e\}$, then H is a subgroup of G and it is cyclic.
\therefore The result is trivial.

Suppose $H \neq\{e\}$ then there exists an element $x \in H$ with $x \neq e$.
$\therefore x=a^{k}$ for some integer k .

Let m be the least positive integer such that $a^{m} \epsilon H$.
Let $b \in H$ then $b=a^{n}$ for some integer n .
Let $n=m q+r$ where $0 \leq r<m$
$\Rightarrow b=a^{n}$
$\Rightarrow b=a^{m q+r}$
$\Rightarrow b=a^{m q} * a^{r}$
$\Rightarrow b=\left(a^{m}\right)^{q} * a^{r}$
$\Rightarrow a^{r}=b /\left(a^{m}\right)^{q}$
$\Rightarrow a^{r}=b *\left(a^{m}\right)^{-q}$

Now $b \in H,\left(a^{m}\right)^{q} \in H$ and H is closed in *.
\therefore we have $b *\left(a^{m}\right)^{-q} \epsilon H$

This shows that there exists an integer " r " such that $o \leq r<m$ with $a^{r} \epsilon H$.
Since m is the least positive integer for which $a^{m} \in H, a^{r} \in H$ with $o \leq r<m$ is not possible.
$\therefore r=0$ so $b=a^{m q}$
$\Rightarrow b=\left(a^{m}\right)^{q}$

Every element $b \in H$ is expressed as a power of a^{m}.
i.e., H is generated by the element $a^{m} \epsilon H$

H is a cyclic group generated by a^{m}.

Hence, every subgroup of a cyclic group is cyclic.

