4.3 Subgroups

Define Subgroups

Let (G, *) be a group. Then (H, *) is said to be subgroup of (G, *) if $H \subseteq G$ and

(H, *) itself is a group under the operation *

i.e., (H, *) is said to be a subgroup of (G, *) if

- $e \in H$, where e is the identity in G.
- For any $a \in H$, $a^{-1} \in H$
- For $a, b \in H$, $a * b \in H$

Define Trivial and Proper Subgroups

- $(\{e\}, *)$ and (G, *) are trivial subgroups of (G, *).
- All other subgroups of (G, *) are called proper subgroups.

Examples of Subgroups:

- (Z, +) is a Subgroup of (Q, +)
- (Q, +) is a Subgroup of (R, +)
- (R, +) is a Subgroup of(C,+)

Example of Subgroups

Find all the subgroups $(z_{12},+12)$

Solution:

 $z_{12} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\} \mathsf{NEER}/VG$

- Let $S_1 = \{0, 6\}$
- $S_2 = \{0, 4, 8\}$
- $S_3 = \{0, 3, 6, 9\}$
- $S_4 = \{0, 2, 4, 6, 8\}$
- S_1, S_2, S_3, S_4 are proper subgroups of $(z_{12}, +12)$
- $(\{0\}, +12)$ and $(z_{12}, +12)$ are its trivial subgroup

Theorems on Subgroups:

Theorem: 1

OBSERVE OPTIMIZE OUTSPREAD

KULAM, KANYAKU

State and prove the necessary and sufficient condition for a subset of a

group to be subgroup.

Statement:

Let (G, *) be a group. H is a nonempty subset of G, then H is a subgroup of G

if and only if whenever $a, b \in H \Rightarrow a * b^{-1} \in H$ for all

$a, b \in H$

(Definition: (G, *) be a group, H nonempty subset of G. H is a subgroup of G if

4M, KANYAKUM

H itself is a group under the same binary operation *)

Proof:

Necessary Part

Let (G, *) be a group. H is a nonempty subset of G.

Assume that H is a subgroup of G.

By definition, (H, *) is a group.

So $a, b \in H \Rightarrow b^{-1} \in H$ by inverse property

 $\Rightarrow a * b^{-1} \in H$ by closure property

Sufficient Part

Let (G, *) be a group. H is a nonempty subset of G. SPREAD

Assume $a, b \in H \Rightarrow a * b^{-1} \in H \rightarrow$ (1)

Claim: H is a subgroup of

G i.e., (H, *) is a group.

H is nonempty so let $a \in H$

NGINEERING

(iii) Identity

Now $a, a \in H$ by (1)

 $a * a^{-1} \in H$

i.e., $e \in H$

Identity exists

(iv)Inverse

Let $a \in H$. Now by previous step $e \in H$.

Now $e, a \in H$ by (1)

 $\Rightarrow e * a^{-1} \in H$

 $\Rightarrow e \in H$

Hence Inverse exists.

(i) Closure

Let $a, b \in H$ by previous step $bE^1 \in H$ IMIZE OUTSPREAD

PALKULAM, KANYAKU

Now $a, b^{-1} \in H$ by (1)

 $\Rightarrow a * (b^{-1})^{-1} \in H$

 $\Rightarrow a * b \in H$

Closure is verified.

(ii) Associative

 $a, b, c \in H$, $H \subseteq G$, $a, b, c \in G$

In G (a * b) * c = a * (b * c)

 $\therefore \text{ In H} (a * b) * c = a * (b * c)$

Associative is verified.

(H, *) be a group.

Hence H is a subgroup of G.

Theorem: 2

Prove that intersection of two subgroups of a group (G, *) is a subgroup of

Hence the proof.

(G, *). Also, prove that union of subgroups need not be a group.

Proof:

OBSERVE OPTIMIZE OUTSPREAD

Let (G, *) be a group. H and K are non – empty subgroups of (G, *). Both

H and K satisfying the following necessary conditions

Let $a, b \in H \Rightarrow a * b^{-1} \in H$

Let $a, b \in K \Rightarrow a * b^{-1} \in K$... (1)

ERING

Consider the subset $H \cap K$ of G

(i) Since H is a subgroup of G, $e \in H$

Since K is a subgroup of G, $e \in K$

 $\therefore e \in H \cap K$

so, $H \cap K$ is a non – empty subset of G.

(ii) Let a, $b \in H \cap K$

By Sufficient condition for aSubgroup

We need to prove $a * b^{-1} \in H \cap K$

 $a, b \in H$ and $a, b \in K$

By (1) $a * b^{-1} \in H \cap K$

 $: H \cap K$ is a subgroup of (G, *) - M, KANYA

Hence the proof.

Now we are going to Prove that Union of two Subgroups of a group need

not be a Subgroup.

Let us prove the above fact by giving counter examples

Consider G = set of integers under addition (Z, +)

 $= \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$

- $H = 2Z = \{\ldots, -6, -4, -2, 0, 2, 4, 6, \ldots\}$
- $K = 3Z = \{\ldots, -9, -6, -3, 0, 3, 6, 9, \ldots\}$

H and K are subgroups of (Z, +)

 $H \cup K = \{\ldots, -9, -6, -4, -3, -2, 0, 2, 3, 4, 6, 9, \ldots\}$

 $H \cup K$ is not closed under addition.

As $2,3 \in H \cup K$ but $2 + 3 = 5 \notin H \cup K$

So $H \cup K$ is not a subgroup of (Z, +).

Cyclic Group:

Define Cyclic Groups

A group (G, *) is said to be cyclic if there exists an element $a \in G$ such that every

VE OPTIMIZE OUTSPREA

Hence the proof.

element of G can be written as some power of "a".

i.e., a^n for some integer n.

G is said to be generated by "a" (or) "a" is a generator ofG.

We write $G = \prec a \succ$

Examples:

The set of complex numbers $\{1, -1, i, -i\}$ under multiplication operation is a cyclic group.

There are two generators -i and i as $i^1 = 1$, $i^2 = -1$, $i^3 = -i$, $i^4 = 1$ and also

 $(-i)^1 = -i$, $(-i)^2 = -1$, $(-i)^3 = i$, $(-i)^4 = 1$ which covers all the elements of the

group.

Hence it is a Cyclic Group.

However -1 is not a generator.

Theorem: 1

Every Subgroup of a Cyclic group is Cyclic.

Proof:

LKULAM, KANY Let H be a cyclic group generated by an element $a \in G$.

: Every element in G can be expressed as a power of the element "a".

Let H be a subgroup of G.

If $H = \{e\}$, then H is a subgroup of G and it is cyclic.

 \therefore The result is trivial.

Suppose $H \neq \{e\}$ then there exists an element $x \in H$ with $x \neq e$.

 $\therefore x = a^k$ for some integer k.

Let m be the least positive integer such that $a^m \epsilon H$.

Let $b \in H$ then $b = a^n$ for some integer n.

Let
$$n = mq + r$$
 where $0 \le r < m$
 $\Rightarrow b = a^n$
 $\Rightarrow b = a^mq + r$
 $\Rightarrow b = a^mq * a^r$
 $\Rightarrow b = (a^m)^q * a^r$
 $\Rightarrow a^r = b'(a^m)^q$
Now $b \in H$, $(a^m)^q \in H$ and H is closed in *.

:. we have $b * (a^m)^{-q} \in H_{SERVE OPTIMIZE OUTSPREAD}$ This shows that there exists an integer "r" such that $o \le r < m$ with $a^r \in H$. Since m is the least positive integer for which $a^m \in H$, $a^r \in H$ with $o \le r < m$ is

not possible.

 \therefore r = 0 so $b = a^{mq}$

 $\Rightarrow b = (a^m)^q$

Every element $b \in H$ is expressed as a power of a^m .

i.e., H is generated by the element $a^m \epsilon H$

H is a cyclic group generated by a^m .

Hence, every subgroup of a cyclic group is

cyclic.

OBSERVE OPTIMIZE OUTSPREAD