
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3401ALGORITHMS

QUICKSORT
Quicksort is the other important sorting algorithm that is based on the divide-and-

conquer approach. quicksort divides input elements according to their value. A partition
is an arrangement of the array’s elements so that all the elements to the left of some
element A[s] are less than or equal to A[s], and all the elements to the right of A[s] are
greater than or equal toit:

A[0]...A[s−1] A[s] A[s + 1] . . . A[n −1]

allareSA[s] all areSA[s]

Sort the two subarrays to the left and to the right of A[s] independently. No work
required to combine the solutions to the subproblems.

Here is pseudocode of quicksort: call Quicksort(A[0..n − 1]) where As a partition algorithm
use the
HoarePartition

ALGORITHM Quicksort(A[l..r])

//Sorts a subarray by quicksort

//Input: Subarray of array A[0..n − 1], defined by its left and right indices l and r

//Output: Subarray A[l..r] sorted in nondecreasing order

if l < r

s ←HoarePartition(A[l..r]) //s is a split position

Quicksort(
A[l..s − 1])
Quicksort(
A[s + 1..r])

ALGORITHM HoarePartition(A[l..r])

//Partitions a subarray by Hoare’s algorithm, using the first element as a pivot



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3401ALGORITHMS

//Input: Subarray of array A[0..n − 1], defined by its left and right indices l and r (l<r)

//Output: Partition of A[l..r], with the split position returned as this function’s value
p←A[l]

i ←l; j ←r + 1

repeat
repeat i ←i + 1
until A[i]≥ p repeat
j ←j − 1 until A[j ]≤
p swap(A[i], A[j ])

until i ≥ j

swap(A[i], A[j ]) //undo last swap when i ≥ j

swap(A[l], A[j ])

return j



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3401ALGORITHMS

FIGURE 2.11 Example of quicksort operation of Array with pivots shown in bold.



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3401ALGORITHMS

FIGURE - Tree of recursive calls to Quicksort with input values l and r of subarray
bounds and split position s of a partition obtained.

The number of key comparisons in the best case satisfies the recurrence
Cbest(n) = 2Cbest(n/2) + n for n>1, Cbest(1) =0.

By Master Theorem, Cbest(n) Θ(n log2 n); solving it exactly for n = 2k yields Cbest(n)
= n log2 n. The total number of key comparisons made will be equal to

Cworst(n) = (n + 1) + n + . . . + 3 = ((n + 1)(n + 2))/2− 3 Θ(n2).


