QUICKSORT

Quicksort is the other important sorting algorithm that is based on the divide-andconquer approach. quicksort divides input elements according to their value. A partition is an arrangement of the array's elements so that all the elements to the left of some element $A[s]$ are less than or equal to $A[s]$, and all the elements to the right of $A[s]$ are greater than or equal toit:

Sort the two subarrays to the left and to the right of $A[s]$ independently. No work required to combine the solutions to the subproblems.
Here is pseudocode of quicksort: call Quicksort ($A[0 . . n-1]$) where As a partition algorithm use the
HoarePartition

ALGORITHM Quicksort(A[I..r])
//Sorts a subarray by quicksort
$/ /$ Input: Subarray of array $A[0 . . n-1]$, defined by its left and right indices l and r //Output: Subarray $A[l . . r]$ sorted in nondecreasing order
if $l<r$
$s \leftarrow$ HoarePartition(A[1..r])//s is a split position
Quicksort(
A[l..s-1])
Quicksort(
$A[s+1 . . r])$

ALGORITHM HoarePartition(A[1..r])
//Partitions a subarray by Hoare's algorithm, using the first element as a pivot
$/ /$ Input: Subarray of array $A[0 . . n-1]$, defined by its left and right indices l and $r(l<r)$ $/ /$ Output: Partition of $A[l . . r]$, with the split position returned as this function's value $p \leftarrow A[/]$
$i \leftarrow l ; j \leftarrow r+1$

repeat

repeat $i \leqslant i+1$
until $A[i] \geq p$ repeat
$j \leftarrow j-1$ until $A[j] \leq$
$p \operatorname{swap}(A[i], A[j])$
until $i \geq j$
$\operatorname{swap}(A[i], A[j]) / /$ undo last swap when $i \geq j$
$\operatorname{swap}(A[I], A[j])$
return j

FIGURE 2.11 Example of quicksort operation of Array with pivots shown in bold.

FIGURE - Tree of recursive calls to Quicksort with input values / and r of subarray bounds and split position s of a partition obtained.

The number of key comparisons in the best case satisfies the recurrence $C_{\text {best }}(\mathrm{n})=2 C_{\text {best }}(\mathrm{n} / 2)+\mathrm{n}$ for $\mathrm{n}>1, \quad C_{\text {best }}(1)=0$.
By Master Theorem, $C_{\text {best }}(\mathrm{n}) \in \Theta\left(\mathrm{n} \log _{2} \mathrm{n}\right)$; solving it exactly for $\mathrm{n}=2^{\mathrm{k}}$ yields $\mathrm{C}_{\text {best }}(\mathrm{n})$ $=\mathrm{n} \log _{2} \mathrm{n}$. The total number of key comparisons made will be equal to
Cworst(n) $=(n+1)+n+\ldots+3=((n+1)(n+2)) / 2-3 \in \Theta\left(n^{2}\right)$.

$$
\begin{aligned}
& C_{\text {avg }}(n)=\frac{1}{n} \sum_{s=0}^{n-1}\left[(n+1)+C_{\text {avg }}(s)+C_{\text {avg }}(n-1-s)\right] \text { for } n>1, \\
& C_{\text {avg }}(0)=0, \quad C_{\text {avg }}(1)=0 . \\
& C_{\text {avg }}(n) \approx 2 n \ln n \approx 1.39 n \log _{2} n .
\end{aligned}
$$

