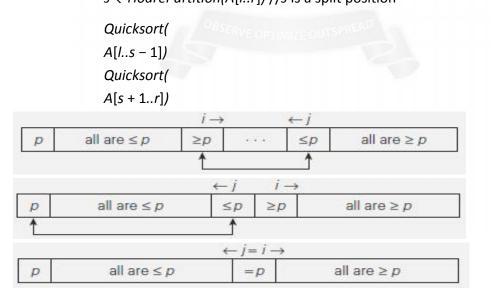

QUICKSORT

Quicksort is the other important sorting algorithm that is based on the divide-andconquer approach. quicksort divides input elements according to their value. A partition is an arrangement of the array's elements so that all the elements to the left of some element A[s] are less than or equal to A[s], and all the elements to the right of A[s] are greater than or equal toit:

Sort the two subarrays to the left and to the right of A[s] independently. No work required to combine the solutions to the subproblems.

Here is pseudocode of quicksort: call Quicksort(A[0..n - 1]) where As a partition algorithm use the


HoarePartition

ALGORITHM Quicksort(A[1..r])

//Sorts a subarray by quicksort

//Input: Subarray of array A[0..n - 1], defined by its left and right indices *l* and *r* //Output: Subarray A[l..r] sorted in nondecreasing order if l < r

 $s \leftarrow HoarePartition(A[I..r]) //s$ is a split position

ALGORITHM HoarePartition(A[l..r])

//Partitions a subarray by Hoare's algorithm, using the first element as a pivot

CS3401ALGORITHMS

//Input: Subarray of array A[0..n - 1], defined by its left and right indices *l* and *r* (*l*<*r*) //Output: Partition of A[l..r], with the split position returned as this function's value $p \leftarrow A[l]$

 $i \leftarrow l; j \leftarrow r + 1$

repeat

repeat $i \leftarrow i + 1$ until $A[i] \ge p$ repeat $j \leftarrow j - 1$ until $A[j] \le p$ swap(A[i], A[j])

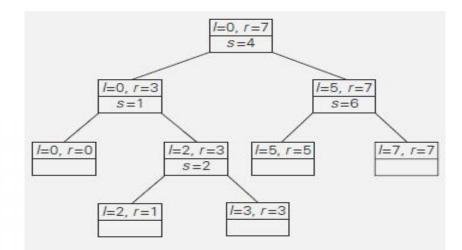
until $i \ge j$

 $swap(A[i], A[j]) //undo last swap when i \ge j$

swap(A[/], A[j])

return j

CS3401ALGORITHMS


ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

0	1	2	3	4	5	6	7	
5	1 i 3	1	9	8	2	4	7 j 7	
5	3	1	9 i 9	8	2	<i>j</i> 4	7	
5	3	1	<i>i</i> 4			4 j 4 j 9	7	
5	3	1	4	<i>i</i> 8	<i>j</i> 2	9	7	
5	3	1	4	8 i 2 j 2 5	2 j 2 j 8 i 8	9	7	
5	3	1	4	j 2	<i>i</i> 8	9	7	
2	з	1		5	8	9	7	
2	3 ; 3 ; 3 ; 1 ; 1 ; 1 2	1	4 <i>j</i> 4					
2	i 3	j 1	4					
2	1	1 j 1 j 3 ; 3 3	4					
2	j	i	4					
1	2	3	4					
1			;;					
		3	4					
		3 j 3	i j 4 i 4 4					
			4					
					8	i 9 i 7 j 7 8	; 7 ;9 ;9	
					8	i	j	
						i	i j	
					8	7		
					7 7	8	9	
					7		0	
							9	

FIGURE 2.11 Example of quicksort operation of Array with pivots shown in bold.

CS3401ALGORITHMS

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

FIGURE - Tree of recursive calls to *Quicksort* with input values *I* and *r* of subarray bounds and split position *s* of a partition obtained.

The number of key comparisons in the best case satisfies the recurrence

 $C_{\text{best}}(n) = 2C_{\text{best}}(n/2) + n \text{ for } n > 1, \quad C_{\text{best}}(1) = 0.$ By Master Theorem, $C_{\text{best}}(n) \in (n \log_2 n)$; solving it exactly for $n = 2^k$ yields $C_{\text{best}}(n) = n \log_2 n$. The total number of key comparisons made will be equal to $Cworst(n) = (n + 1) + n + \ldots + 3 = ((n + 1)(n + 2))/2 - 3 \in O(n^2).$

$$C_{avg}(n) = \frac{1}{n} \sum_{s=0}^{n-1} [(n+1) + C_{avg}(s) + C_{avg}(n-1-s)] \quad \text{for } n > 1,$$

$$C_{avg}(0) = 0, \quad C_{avg}(1) = 0.$$

 $C_{avg}(n) \approx 2n \ln n \approx 1.39n \log_2 n.$