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QUICKSORT

Quicksort is the other important sorting algorithm that is based on the divide-and-
conquer approach. quicksort divides input el ements according to their value. A partition
is an arrangement of the array’s elements so that all the elements to the left of some
element A[s] are less than or equal to Als], and all the elements to the right of A[s] are
greater than or equal toit:

A[O]...A[s—1] Als] Als+1]...A[n-1]

H_J H_/

allareSA[s] all areSA[s]
Sort the two subarrays to the left and to the right of A[s] independently. No work
required to combine the solutions to the subproblems.

Here is pseudocode of quicksort: call Quicksort(A[O..n — 1]) where As a partition algorithm
use the
HoarePartition

ALGORITHM Quicksort(All..r])

/[Sorts a subarray by quicksort

llInput: Subarray of array A[O..n — 1], defined by its left and right indices | and r
/[Output: Subarray A[l..r] sorted in nondecreasing order

ifl<r

s &HoarePartition(A[l..r]) //s is a split position

Quicksort(
All..s-1])
Quicksort(
Als+1..r])
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ALGORITHM HoarePartition(A[l..r])

//Partitions a subarray by Hoare’s algorithm, using the first element as a pivot
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/lInput: Subarray of array A[O..n — 1], defined by itsleft and right indices| and r (I<r)
/[Output: Partition of A[l..r], with the split position returned as this function’s value
p<Alll

i&<hjér+1

repeat
repeat i &i o+ 1
until A[/]= p repeat
j&j-1until A[j 1<
p swap(A[il, Alj])

until j >
swap(A[i], A[j]) //undo last swap when i >
swap(All], Alj 1)

return j
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FIGURE 2.11 Example of quicksort operation of Array with pivots shown in bold.
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FIGURE - Tree of recursive calls to Quicksort with input values / and r of subarray
bounds and split position s of a partition obtained.

The number of key comparisonsin the best case satisfies the recurrence

Choest(N) = 2Chest(n/2) + nfor n>1,  Cpes(1) =0.

By Master Theorem, Crest(n) € O(n logz n); solving it exactly for n = 2 yields Cpes(n)
=nlogz n. The total number of key comparisons made will be equal to
Cworst(n)=(n+1)+n+...+3=((n+1)(n+2))/2- 3 €O(n?).

n—1
g iy =22 E [(n+ 1)+ Cauels) + Capeln — 1 —5)] forn=1,
' n < ' '
r=(l

Cf"l'.f-’[{].] =0, Cﬂl'{s‘“} =1

Cauvg(n) 7= 2n In n ~= 1.39n log, n.
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