MODULE -V ENERGY SOURCES & STORAGE DEVICES

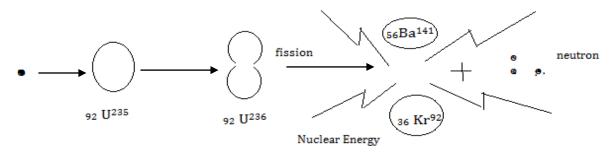
- **5.1 Nuclear Energy Sources**
 - **5.1.1 Nuclear Energy**
 - **5.1.2 Nuclear Fission**
 - **5.1.3** Nuclear fusion
 - **5.1.4 Nuclear Chain reactions**

5.1 NUCLEAR ENERGY SOURCES

5.1.1 Nuclear Energy

Nuclear energy is a form of energy released from the nucleus, the core of atoms, made up of protons and neutrons.

This source of energy can be produced in two ways


- > fission when nuclei of atoms split into several parts
- ➤ fusion when nuclei fuse together.
- > The large amount of energy released during the fission and fusion reaction is known as nuclear energy

5.1.2 Nuclear Fission

The process of splitting of heavier nucleus in to 2 or smaller nuclei with the release of large amount of Energy is called Nuclear fission.

Eg.

$$_{92}$$
 U²³⁵+ $_{o}$ n¹ \longrightarrow $\boxed{}$ $_{92}$ U²³⁶ $\boxed{}$ $\underline{\text{fission}}$ $_{56}$ Ba¹⁴¹ + $_{36}$ Kr⁹² + $_{30}$ n¹ +E [Uranium Nucleus] [Neutron] unstable

fission Points

Fig:1-Nuclear fission

Source: physical chemistry by Arun paul

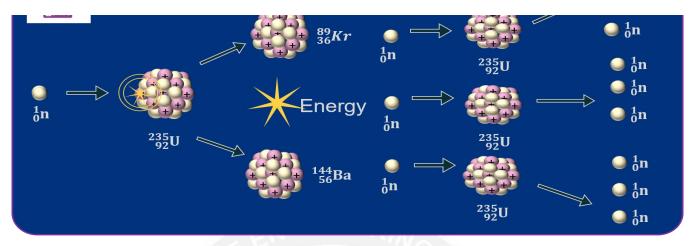


Fig:2-Nuclear fission

Source: physical chemistry by Arun paul

Energy released during nuclear fission reaction

- ❖ In fission reaction the sum of the masses of the products is less than the reactants total mass.
- ❖ This loss in mass is converted into energy by Einstein's equation.
 E=mc²

Where

E= energy

M= loss in mass

C= velocity of light

Calculation of energy released during the fission of 92U 235

The fission reaction is

Total Mass of Reactants	Total Mass of Products
$_{92}U^{235}=235.120$	$_{56}B^{141}=140.910$
on ¹ =1.009	$_{36}\text{Kr}^{92} = 91.910$
Total mass of reactants = 236.129	₃ on ¹ =3.027
amu	(3x1.009)

Total mass of products = 235.847
amu

Loss in mass (mass defect) = Total mass of reactants – Total mass of products = 236.129-

235.847

0.282 amu

Energy released:

Loss in mass = 0.282 amu

1 amu = 931 MeV

0.282 amu = 0.282 x 931 MeV= 262.524 MeV

Energy Released = 262.524 MeV

Characteristics of Nuclear fission.

- 1) Heavier nucleus splits into 2 or more smaller nuclear.
- 2) Two or more neutrons are released.
- 3) Large amount of energy is released.
- 4) All the fission products are radioactive, giving –off β and γ radiations.
- 5) The fission reactions are self-propagating.
- 6) Nuclear fission reactions can be controlled by absorbing the extra neutrons.
- 7) The number of neutrons released from a single fission is called the multiplication factor. If it is less than 1, there is no chain reaction.

5.1.3 Nuclear fusion

The process in which 2 or smaller nuclear combine to give one heavier nuclear is known as nuclear fusion.

Eg.

$$_{1}H^{2} + _{1}H^{2}$$
 \longrightarrow $_{2}He^{4} + Energy$

Hydrogen nucleus

Helium nucleus

Nuclear Fusion

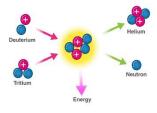


Fig:3-Nuclear fussion

Sources: Online sources

Nuclear fusion reaction takes place at very high temperature.

Difference between Nuclear fission and Nuclear fusion

Sl.No	Nuclear Fission	Nuclear Fusion
1	Splitting of heavy nuclear into small nuclear	Small Nuclear combine to from heavy nucleus
2	Emits neutrons	Emits positron
3	Occurs at ordinary temperature	Occurs at very high temperature ($> 10^6$ k)
4	Can be controlled	Cannot be controlled
5	It is a chain process	It is not a chain process

6	Fission products are	Fusion products are not
6	radioactive.	radioactive
7	Energy released is less when compared to nuclear fusion reactions	Very high amount of energy is released

5.1.4 Nuclear Chain reactions:

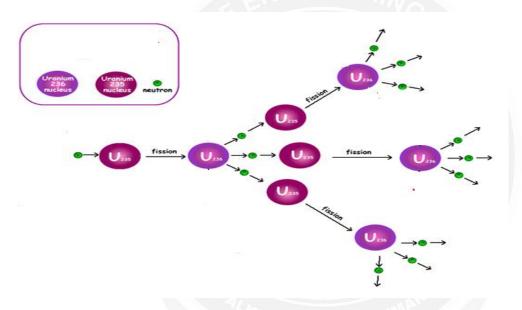


Fig:4-Nuclear Chain reaction

$$_{92}U^{235} + _{o}n^{1}$$
 \longrightarrow $_{56}Ba^{140} + _{36}Kr^{93} + 3_{0}n^{1} + Energy$

Critical Mass is the minimum mass of fissionable material required to sustain a chain reaction

Sub- Critical mass is a mass less than its critical mass

Super critical mass is a mass greater than its critical mass.

Controlled chain reaction – The chain reaction can be controlled by absorbing a desired number of neutrons so that only one neutron remains available to carry out further fission such a reaction is known as a controlled chain reaction.

Uses of Nuclear energy

- 1. To generate electricity
- 2. Used in medicine like treatment of diseases like cancer
- 3. In improvement of agriculture and industry
- 4. Scientific and research
- 5. Consumer products
- 6. Industrial applications
- 7. Space

