Mathematical Representation of Signals

Basic operations on Signals:

There are two variable parameters in general:

1. Amplitude
2. Time
(1) The following operation can be performed with amplitude:

Amplitude Scaling

C $x(t)$ is a amplitude scaled version of $x(t)$ whose amplitude is scaled by a factor C.

Addition

Addition of two signals is nothing but addition of their corresponding amplitudes.
This can be best explained by using the following example:

As seen from the previous diagram,
$-10<\mathrm{t}<-3$ amplitude of $\mathrm{z}(\mathrm{t})=\mathrm{x} 1(\mathrm{t})+\mathrm{x} 2(\mathrm{t})=0+2=2$
$-3<\mathrm{t}<3$ amplitude of $\mathrm{z}(\mathrm{t})=\mathrm{x} 1(\mathrm{t})+\mathrm{x} 2(\mathrm{t})=1+2=3$
$3<\mathrm{t}<10$ amplitude of $\mathrm{z}(\mathrm{t})=\mathrm{x} 1(\mathrm{t})+\mathrm{x} 2(\mathrm{t})=0+2=2$

Subtraction

Subtraction of two signals is nothing but subtraction of their corresponding amplitudes. This can be best explained by the following example:

As seen from the diagram above,
$-10<\mathrm{t}<-3$ amplitude of $\mathrm{z}(\mathrm{t})=\mathrm{x} 1(\mathrm{t})-\mathrm{x} 2(\mathrm{t})=0-2=-2$
$-3<t<3$ amplitude of $\mathrm{z}(\mathrm{t})=\mathrm{x} 1(\mathrm{t})-\mathrm{x} 2(\mathrm{t})=1-2=-1$
$3<\mathrm{t}<10$ amplitude of $\mathrm{z}(\mathrm{t})=\mathrm{x} 1(\mathrm{t})-\mathrm{x} 2(\mathrm{t})=0-2=-2$

Multiplication

Multiplication of two signals is nothing but multiplication of their corresponding amplitudes. This can be best explained by the following example:

As seen from the diagram above,
$-10<\mathrm{t}<-3$ amplitude of $\mathrm{z}(\mathrm{t})=\mathrm{x} 1(\mathrm{t}) \times \mathrm{x} 2(\mathrm{t})=0 \times 2=0$
$-3<\mathrm{t}<3$ amplitude of $\mathrm{z}(\mathrm{t})=\mathrm{x} 1(\mathrm{t})-\mathrm{x} 2(\mathrm{t})=1 \times 2=2$
$3<\mathrm{t}<10$ amplitude of $\mathrm{z}(\mathrm{t})=\mathrm{x} 1(\mathrm{t})-\mathrm{x} 2(\mathrm{t})=0 \times 2=0$
(2) The following operations can be performed withtime:

Time Shifting

$x(t \pm t 0)$ is time shifted version of the signal $x(t)$.
$\mathrm{x}(\mathrm{t}+\mathrm{t} 0) \rightarrow$ negative shift
$\mathrm{x}(\mathrm{t}-\mathrm{t} 0) \rightarrow$ positive shift

Time Scaling

$x(A t)$ is time scaled version of the signal $x(t)$. where A is always positive.
$|\mathrm{A}|>1 \rightarrow$ Compression of the signal
$|\mathrm{A}|<1 \rightarrow$ Expansion of the signal

Note: $u(a t)=u(t)$ time scaling is not applicable for unit step function.

Time Reversal

$x(-t)$ is the time reversal of the signal $x(t)$.

