Connectivity:

A graph is said to be connected if there is a path between every pair of vertex. From every vertex to any other vertex, there should be some path to traverse.

That is called the connectivity of a graph. A graph with multiple disconnected vertices and edges is said to be disconnected.

Example 1

In the following graph, it is possible to travel from one vertex to any other vertex.
For example, one can traverse from vertex ' a ' to vertex ' e ' using the path ' $a-b-e$ '.

Theorem: 1

Show that graph \boldsymbol{G} is disconnected if and only if its vertex set \boldsymbol{V} can be partitioned into two nonempty subsets V_{1} and V_{2} such that there exists no edge in G whose one end vertex is in V_{1} and the other in V_{2}.

Proof:

Suppose that such a partitioning exists. Consider two arbitrary vertices a and b of G such that $a \in V_{1}$ and $b \in V_{2}$.

No path can exist between vertices a and b.

Otherwise, there would be atleast one edge whose one end vertex be in V_{1} and the other in V_{2}.

Hence if partition exists, G is not connected.

Conversely, let G be a disconnected graph.

Consider a vertex a in G.

Let V_{1} be the set of all vertices that are joined by paths to a.

Since G is disconnected, V_{1} does not include all vertices of G.

The remaining vertices will form a set V_{2}.

No vertex in V_{1} is joined to any in V_{2} by an edge.

Hence the partition.

Hence the proof.

Components of a graph:

The connected subgraphs of a graph G are called components of the graph G.

Theorem: 1

A simple graph with \boldsymbol{n} vertices and \boldsymbol{k} components can have atmost

$\frac{(n-k)(n-k+1)}{2}$ edges.

Proof:

Let $n_{1}, n_{2}, \ldots, n_{k}$ be the number of vertices in each of k components of the graph G.

Then $n_{1}+n_{2}+\ldots+n_{k}=n=|V(G)|$

$$
\begin{equation*}
\sum_{i=1}^{k} n_{i}=n \tag{1}
\end{equation*}
$$

Now, $\sum_{i=1}^{k}\left(n_{i}-1\right)=\left(n_{1}-1\right)+\left(n_{2}-1\right)+\ldots+\left(n_{k}-1\right)$

$$
=\sum_{i=1}^{k} n_{i}-k
$$

$$
\Rightarrow \sum_{i=1}^{k}\left(n_{i}-1\right)=n-k
$$

Squaring on both sides

$$
\Rightarrow\left[\sum_{i=1}^{k}\left(n_{i}-1\right)\right]^{2}=(n-k)^{2}
$$

$\Rightarrow\left(n_{1}-1\right)^{2}+\left(n_{2}-1\right)^{2}+\ldots+\left(n_{k}-1\right)^{2} \leq n^{2}+k^{2}-2 n k$
$\Rightarrow n_{1}^{2}+1-2 n_{1}+n_{2}^{2}+1-2 n_{2}+\ldots+n_{k}^{2}+1-2 n_{k} \leq n^{2}+k^{2}-2 n k$

$$
\begin{align*}
& \Rightarrow \sum_{i=1}^{k} n_{i}^{2}+k-2 n \leq n^{2}+k^{2}-2 n k \\
& \Rightarrow \sum_{i=1}^{k} n_{i}^{2} \leq n^{2}+k^{2}-2 n k+2 n-k \\
& \Rightarrow \sum_{i=1}^{k} n_{i}^{2}=n^{2}+k^{2}-k-2 n k+2 n \\
& \\
& =n^{2}+k(k-1)-2 n(k-1) \tag{2}\\
& \\
& =n^{2}+(k-1)(k-2 n) \ldots(
\end{align*}
$$

Since, G is simple, the maximum number of edges of G in its components is $\frac{n_{i}\left(n_{i}-1\right)}{2}$.

Maximum number of edges of $G=\sum_{i=1}^{k} \frac{n_{i}\left(n_{i}-1\right)}{2}$

$$
\begin{aligned}
& =\sum_{i=1}^{k}\left[\frac{n_{i}^{2}-n_{i}}{2}\right] \\
& =\frac{1}{2} \sum_{i=1}^{k} n_{i}^{2}-\frac{1}{2} \sum_{i=1}^{k} n_{i} \\
\leq & \frac{1}{2}\left[n^{2}+(k-1)(k-2 n)\right]-\frac{n}{2} \quad(\mathrm{Using}(1) \text { and }(2)) \\
= & \frac{1}{2}\left[n^{2}-2 n k+k^{2}+2 n-k-n\right] \\
= & \frac{1}{2}\left[n^{2}-2 n k+k^{2}+n-k\right] \\
= & \frac{1}{2}\left[(n-k)^{2}+(n-k)\right]
\end{aligned}
$$

$$
=\frac{1}{2}[(n-k)(n-k+1)]
$$

Maximum number of edges of $G \leq \frac{(n-k)(n-k+1)}{2}$

Hence the proof.

