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Connectivity: 

                   A graph is said to be connected if there is a path between every pair of 

vertex. From every vertex to any other vertex, there should be some path to traverse. 

That is called the connectivity of a graph. A graph with multiple disconnected 

vertices and edges is said to be disconnected. 

Example 1 

In the following graph, it is possible to travel from one vertex to any other vertex. 

For example, one can traverse from vertex ‘a’ to vertex ‘e’ using the path ‘a-b-e’. 

 

Theorem: 1 

Show that graph 𝑮 is disconnected if and only if its vertex set 𝑽 can be 

partitioned into two nonempty subsets 𝑽𝟏 and 𝑽𝟐 such that there exists no 

edge in 𝑮 whose one end vertex is in 𝑽𝟏 and the other in 𝑽𝟐. 
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Proof: 

Suppose that such a partitioning exists. Consider two arbitrary vertices 𝑎 and 𝑏 of 

𝐺 such that 𝑎 ∈ 𝑉1 and 𝑏 ∈ 𝑉2.  

No path can exist between vertices 𝑎 and 𝑏.  

Otherwise, there would be atleast one edge whose one end vertex be in 𝑉1 and the 

other in 𝑉2.  

Hence if partition exists, 𝐺 is not connected. 

Conversely, let 𝐺 be a disconnected graph. 

Consider a vertex 𝑎 in 𝐺.  

Let 𝑉1 be the set of all vertices that are joined by paths to 𝑎.  

Since 𝐺 is disconnected, 𝑉1 does not include all vertices of 𝐺.  

The remaining vertices will form a set 𝑉2.  

No vertex in 𝑉1 is joined to any in 𝑉2 by an edge.  

Hence the partition. 

Hence the proof. 

Components of a graph: 
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The connected subgraphs of a graph 𝐺 are called components of the graph 𝐺. 

Theorem: 1  

A simple graph with 𝒏 vertices and 𝒌 components can have atmost 

(𝒏−𝒌)(𝒏−𝒌+𝟏)

𝟐
 edges. 

Proof: 

Let 𝑛1, 𝑛2, . . . , 𝑛𝑘 be the number of vertices in each of 𝑘 components of the graph 

𝐺. 

Then 𝑛1 +  𝑛2+ . . . + 𝑛𝑘 = 𝑛 = |𝑉(𝐺)| 

 ∑ 𝑛𝑖 = 𝑛𝑘
𝑖=1      . . . (1) 

Now, ∑ (𝑛𝑖 − 1) = (𝑛1 − 1) + (𝑛2 − 1)+ . . . + (𝑛𝑘 − 1)𝑘
𝑖=1  

                                = ∑ 𝑛𝑖 − 𝑘𝑘
𝑖=1  

         ⇒ ∑ (𝑛𝑖 − 1) = 𝑛 − 𝑘𝑘
𝑖=1  

Squaring on both sides 

 ⇒ [∑ (𝑛𝑖 − 1)𝑘
𝑖=1 ]

2
= (𝑛 − 𝑘)2 

 ⇒ (𝑛1 − 1)2 + (𝑛2 − 1)2+ . . . + (𝑛𝑘 − 1)2 ≤ 𝑛2 + 𝑘2 − 2𝑛𝑘 

 ⇒ 𝑛1
2 + 1 − 2𝑛1 + 𝑛2

2 + 1 − 2𝑛2+ . . . + 𝑛𝑘
2 + 1 − 2𝑛𝑘 ≤ 𝑛2 + 𝑘2 − 2𝑛𝑘 
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 ⇒ ∑ 𝑛𝑖
2 + 𝑘 − 2𝑛 ≤ 𝑛2 + 𝑘2 − 2𝑛𝑘𝑘

𝑖=1  

 ⇒ ∑ 𝑛𝑖
2 ≤ 𝑛2 + 𝑘2 − 2𝑛𝑘 + 2𝑛 − 𝑘𝑘

𝑖=1  

 ⇒ ∑ 𝑛𝑖
2 = 𝑛2 + 𝑘2 − 𝑘 − 2𝑛𝑘 + 2𝑛𝑘

𝑖=1  

                      = 𝑛2 + 𝑘(𝑘 − 1) − 2𝑛(𝑘 − 1)   

                     = 𝑛2 + (𝑘 − 1)(𝑘 − 2𝑛)   . . . (2) 

Since, 𝐺 is simple, the maximum number of edges of 𝐺 in its components is 

𝑛𝑖(𝑛𝑖−1)

2
. 

Maximum number of edges of 𝐺 = ∑
𝑛𝑖(𝑛𝑖−1)

2

𝑘
𝑖=1  

             = ∑ [
𝑛𝑖

2−𝑛𝑖

2
]𝑘

𝑖=1  

              =
1

2
∑ 𝑛𝑖

2𝑘
𝑖=1 −

1

2
∑ 𝑛𝑖

𝑘
𝑖=1  

           ≤
1

2
[𝑛2 + (𝑘 − 1)(𝑘 − 2𝑛)] −

𝑛

2
     (Using (1) and (2)) 

          =
1

2
[𝑛2 − 2𝑛𝑘 + 𝑘2 + 2𝑛 − 𝑘 − 𝑛] 

          =
1

2
[𝑛2 − 2𝑛𝑘 + 𝑘2 + 𝑛 − 𝑘] 

           =
1

2
[(𝑛 − 𝑘)2 + (𝑛 − 𝑘)] 
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           =
1

2
[(𝑛 − 𝑘)(𝑛 − 𝑘 + 1)]  

Maximum number of edges of 𝐺 ≤
(𝑛−𝑘)(𝑛−𝑘+1)

2
 

Hence the proof. 


