3.5 SINGLE STUB MATCHING USING SMITH CHART:

PROBLEM 1:

A 30m long lossless transmission line with $Z_0 = 50$ ohm operating at 2 MHz is terminated with a load $Z_L=60+j40$ ohm. If v=0.6 c on the line, find Refection coefficient, the standing wave ratio and the input impedance.

STEP 1:

- To find The normalized load impedance is
- $Z_L' = \frac{Z_L}{Z_O}$
- $Z_L' = \frac{60+j40}{50}$

• $Z_L' = 1.2 + j0.8$

STEP 2:

• Fig 3.5.1, draw the normalized load impedance in smith chart

Fig: 3.5.1 Normalized load impedance

• Fig 3.5.2, mark the value of Standing Wave Ratio in smith chart

Fig: 3.5.3 wavelength

STEP 5:

• Calculate the velocity and wavelength using 30m long transmission line

EC3551 TRANSMISSION LINES AND RF SYSTEMS

STEP 7:

Fig 3.5.5, calculate the normalized input impedance and mark the Z_{in} in smith chart

$$Z_{in} = Z_{in}' Z_0$$

 $Z_{in}' = 0.48 - 0.03$

Fig: 3.5.6 Reflection coefficient and phase angle

[Source: John D Ryder, —Networks, lines and fields||, 2nd Edition, Prentice Hall India, 2015]