
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3491-ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

1.7 LOCAL SEARCH AND OPTIMIZATION PROBLEMS

Hill Climbing Algorithm in Artificial Intelligence

o Hill climbing algorithm is a local search algorithm which continuously moves in the direction

of increasing elevation/value to find the peak of the mountain or best solution to the

problem. It terminates when it reaches a peak value where no neighbor has a higher value.

o Hill climbing algorithm is a technique which is used for optimizing the mathematical

problems. One of the widely discussed examples of Hill climbing algorithm is Traveling-

salesman Problem in which we need to minimize the distance traveled by the salesman.

o It is also called greedy local search as it only looks to its good immediate neighbor state and

not beyond that.

o A node of hill climbing algorithm has two components which are state and value.

o Hill Climbing is mostly used when a good heuristic is available.

o In this algorithm, we don't need to maintain and handle the search tree or graph as it only

keeps a single current state.

Features of Hill Climbing:

Following are some main features of Hill Climbing Algorithm:

o Generate and Test variant: Hill Climbing is the variant of Generate and Test method. The

Generate and Test method produce feedback which helps to decide which direction to move

in the search space.

o Greedy approach: Hill-climbing algorithm search moves in the direction which optimizes

the cost.

o No backtracking: It does not backtrack the search space, as it does not remember the

previous states.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3491-ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

State-space Diagram for Hill Climbing:

The state-space landscape is a graphical representation of the hill-climbing algorithm which is

showing a graph between various states of algorithm and Objective function/Cost.

On Y-axis we have taken the function which can be an objective function or cost function, and

state-space on the x-axis. If the function on Y-axis is cost then, the goal of search is to find the

global minimum and local minimum. If the function of Y-axis is Objective function, then the goal

of the search is to find the global maximum and local to find the global maximum and local

maximum.

Different regions in the state space landscape:

Local Maximum: Local maximum is a state which is better than its neighbor states, but there is

also another state which is higher than it.

Global Maximum: Global maximum is the best possible state of state space landscape. It has the

highest value of objective function.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3491-ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

Current state: It is a state in a landscape diagram where an agent is currently present.

Flat local maximum: It is a flat space in the landscape where all the neighbor states of current

states have the same value.

Shoulder: It is a plateau region which has an uphill edge.

Types of Hill Climbing Algorithm:

o Simple hill Climbing:

o Steepest-Ascent hill-climbing:

o Stochastic hill Climbing:

1. Simple Hill Climbing:

Simple hill climbing is the simplest way to implement a hill climbing algorithm. It only

evaluates the neighbor node state at a time and selects the first one which optimizes current

cost and set it as a current state. It only checks it's one successor state, and if it finds better than

the current state, then move else be in the same state. This algorithm has the following features:

o Less time consuming

o Less optimal solution and the solution is not guaranteed

Algorithm for Simple Hill Climbing:

o Step 1: Evaluate the initial state, if it is goal state then return success and Stop.

o Step 2: Loop Until a solution is found or there is no new operator left to apply.

o Step 3: Select and apply an operator to the current state.

o Step 4: Check new state:

a. If it is goal state, then return success and quit.

b. Else if it is better than the current state then assign new state as a current state.

c. Else if not better than the current state, then return to step2.

o Step 5: Exit.

2. Steepest-Ascent hill climbing:

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3491-ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

The steepest-Ascent algorithm is a variation of simple hill climbing algorithm. This algorithm

examines all the neighboring nodes of the current state and selects one neighbor node which is

closest to the goal state. This algorithm consumes more time as it searches for multiple neighbors

Algorithm for Steepest-Ascent hill climbing:

o Step 1: Evaluate the initial state, if it is goal state then return success and stop, else make

current state as initial state.

o Step 2: Loop until a solution is found or the current state does not change.

a. Let SUCC be a state such that any successor of the current state will be better than

it.

b. For each operator that applies to the current state:

a. Apply the new operator and generate a new state.

b. Evaluate the new state.

c. If it is goal state, then return it and quit, else compare it to the SUCC.

d. If it is better than SUCC, then set new state as SUCC.

e. If the SUCC is better than the current state, then set current state to SUCC.

o Step 5: Exit.

3. Stochastic hill climbing:

Stochastic hill climbing does not examine for all its neighbor before moving. Rather, this search

algorithm selects one neighbor node at random and decides whether to choose it as a current state

or examine another state.

Problems in Hill Climbing Algorithm:

1. Local Maximum: A local maximum is a peak state in the landscape which is better than each

of its neighboring states, but there is another state also present which is higher than the local

maximum.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3491-ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

Solution: Backtracking technique can be a solution of the local maximum in state space landscape.

Create a list of the promising path so that the algorithm can backtrack the search space and explore

other paths as well.

2. Plateau: A plateau is the flat area of the search space in which all the neighbor states of the

current state contains the same value, because of this algorithm does not find any best direction to

move. A hill-climbing search might be lost in the plateau area.

Solution: The solution for the plateau is to take big steps or very little steps while searching, to

solve the problem. Randomly select a state which is far away from the current state so it is possible

that the algorithm could find non-plateau region.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3491-ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

3. Ridges: A ridge is a special form of the local maximum. It has an area which is higher than its

surrounding areas, but itself has a slope, and cannot be reached in a single move.

Solution: With the use of bidirectional search, or by moving in different directions, we can improve this

problem.

Ridg*e

Simulated Annealing:

A hill-climbing algorithm which never makes a move towards a lower value guaranteed to be incomplete

because it can get stuck on a local maximum. And if algorithm applies a random walk, by moving a successor,

then it may complete but not efficient. Simulated Annealing is an algorithm which yields both efficiency

and completeness.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3491-ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

In mechanical term Annealing is a process of hardening a metal or glass to a high temperature then cooling

gradually, so this allows the metal to reach a low-energy crystalline state. The same process is used in

simulated annealing in which the algorithm picks a random move, instead of picking the best move. If the

random move improves the state, then it follows the same path. Otherwise, the algorithm follows the path

which has a probability of less than 1 or it moves downhill and chooses another path.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3491-ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

1.8 ADVERSARIAL SEARCH

Adversarial search is a search, where we examine the problem which arises when we try to plan

ahead of the world and other agents are planning against us.

o In previous topics, we have studied the search strategies which are only associated with a single

agent that aims to find the solution which often expressed in the form of a sequence of actions.

o But, there might be some situations where more than one agent is searching for the solution in the

same search space, and this situation usually occurs in game playing.

o The environment with more than one agent is termed as multi-agent environment, in which each

agent is an opponent of other agent and playing against each other. Each agent needs to consider the

action of other agent and effect of that action on their performance.

o So, Searches in which two or more players with conflicting goals are trying to explore the same

search space for the solution, are called adversarial searches, often known as Games.

o Games are modeled as a Search problem and heuristic evaluation function, and these are the two

main factors which help to model and solve games in AI.

Types of Games in AI:

Deterministic Chance Moves

Perfect information Chess, Checkers, go, Othello Backgammon, monopoly

Imperfect information Battleships, blind, tic-tac-toe Bridge, poker, scrabble, nuclear war

o Perfect information: A game with the perfect information is that in which agents can look into the

complete board. Agents have all the information about the game, and they can see each other moves

also. Examples are Chess, Checkers, Go, etc.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3491-ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

o Imperfect information: If in a game agents do not have all information about the game and not

aware with what's going on, such type of games are called the game with imperfect information,

such as tic-tac-toe, Battleship, blind, Bridge, etc.

o Deterministic games: Deterministic games are those games which follow a strict pattern and set of

rules for the games, and there is no randomness associated with them. Examples are chess,

Checkers, Go, tic-tac-toe, etc.

o Non-deterministic games: Non-deterministic are those games which have various unpredictable

events and has a factor of chance or luck. This factor of chance or luck is introduced by either dice

or cards. These are random, and each action response is not fixed. Such games are also called as

stochastic games. Example: Backgammon, Monopoly, Poker, etc.

Zero-Sum Game

o Zero-sum games are adversarial search which involves pure competition.

o In Zero-sum game each agent's gain or loss of utility is exactly balanced by the losses or gains of

utility of another agent.

o One player of the game try to maximize one single value, while other player tries to minimize it.

o Each move by one player in the game is called as ply.

o Chess and tic-tac-toe are examples of a Zero-sum game.

Zero-sum game: Embedded thinking

The Zero-sum game involved embedded thinking in which one agent or player is trying to figure out:

o What to do.

o How to decide the move

o Needs to think about his opponent as well

o The opponent also thinks what to do

Each of the players is trying to find out the response of his opponent to their actions. This requires

embedded thinking or backward reasoning to solve the game problems in AI.

Formalization of the problem:

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3491-ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

A game can be defined as a type of search in AI which can be formalized of the following elements:

o Initial state: It specifies how the game is set up at the start.

o Player(s): It specifies which player has moved in the state space.

o Action(s): It returns the set of legal moves in state space.

o Result(s, a): It is the transition model, which specifies the result of moves in the state space.

o Terminal-Test(s): Terminal test is true if the game is over, else it is false at any case. The state

where the game ends is called terminal states.

o Utility(s, p): A utility function gives the final numeric value for a game that ends in terminal states s

for player p. It is also called payoff function. For Chess, the outcomes are a win, loss, or draw and

its payoff values are +1, 0, 'A And for tic-tac-toe, utility values are +1, -1, and 0.

Game tree:

A game tree is a tree where nodes of the tree are the game states and Edges of the tree are the moves by

players. Game tree involves initial state, actions function, and result Function.

Example: Tic-Tac-Toe game tree:

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3491-ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

The following figure is showing part of the game-tree for tic-tac-toe game. Following are some key points

of the game:

o There are two players MAX and MIN.

o Players have an alternate turn and start with MAX.

o MAX maximizes the result of the game tree

o MIN minimizes the result.

Example Explanation:

o From the initial state, MAX has 9 possible moves as he starts first. MAX place x and MIN place o,

and both player plays alternatively until we reach a leaf node where one player has three in a row or

all squares are filled.

o Both players will compute each node, minimax, the minimax value which is the best achievable utility

against an optimal adversary.

o Suppose both the players are well aware of the tic-tac-toe and playing the best play. Each player is

doing his best to prevent another one from winning. MIN is acting against Max in the game.

Utility -1

MAX (x)

MIN (0)

MAX (X)

MIN (0)

TERMINAL

O +1

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3491-ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

o So in the game tree, we have a layer of Max, a layer of MIN, and each layer is called as Ply. Max place

x, then MIN puts o to prevent Max from winning, and this game continues until the terminal node.

o In this either MIN wins, MAX wins, or it's a draw. This game-tree is the whole search space of

possibilities that MIN and MAX are playing tic-tac-toe and taking turns alternately.

Hence adversarial Search for the minimax procedure works as follows:

o It aims to find the optimal strategy for MAX to win the game.

o It follows the approach of Depth-first search.

o In the game tree, optimal leaf node could appear at any depth of the tree.

o Propagate the minimax values up to the tree until the terminal node discovered.

In a given game tree, the optimal strategy can be determined from the minimax value of each node, which

can be written as MINIMAX(n). MAX prefer to move to a state of maximum value and MIN prefer to move

to a state of minimum value then:

For a state S MINIMAX(s) =
>*■

UTILITY(s) If TERMINAL-TEST(s)

—< maXaEActionsfsi Ml NIMAX(RESULT(s, a)) If PLAYER(s) = MAX

miriaEActionsfs) MINIMAX(RESULT(s, a)) If PLAYER(s) = MIN.

