CLOSURE PRO ERTIES OF REGULAR LANGUAGES

1. Closure under Union

If L and M are regular languages, so is $L U M$.
Proof : Let L and M be the languages of regular expressions R and S , respectively.
Then $\mathrm{R}+\mathrm{S}$ is a regular expression whose language is L U M

2. Closure under Concatenation and Kleene Closure

The same idea can be applied using leeneclosure :
RS is a regular expression whose language is LM.
R^{*} is a regular expression whose language is L^{*}.

3. Closure under intersection

If L and M are regular languages, so is $L \cap M$
Proof : Let A and B be two DFA's whose regular languages are L and M respectively.
Now, construct C , the product automation of A and B . Make the final states of C be the pairs consisting of final states of both A and B.

4. Closure under Difference

If L and M area regular languages, so is $L-M$, which means all the strings that are in L, but not in M. Proof : Let A and B be two DFA's whose regular languages are L and M respectively. Now, construct C, the product automation of A and B. Make the final states of C be the pairs consisting of final states of A, but not of B. The DFA's A-B and C-D remain unchanged, but the final DFA varies as follows:

5. Closure under Concatenation

The complementof a language L (with respect to an alphabet Σ such that Σ^{*} contains L) is $\Sigma^{*}-\mathrm{L}$ Since Σ^{*} is surely regular, the complement of a regular language is always regular

6. Closure under Reversal

Given language $L, L R$ is the set of strings whose reversal is in L
$\mathrm{L}=\{0,01,100\} ; \mathrm{LR}=\{0,10,001\}$
Basis: If E is a symbol a, ε, or \emptyset, the $\mathrm{ER}=\mathrm{E}$.
Induction: If E is

- $\mathrm{F}+\mathrm{G}$, then $\mathrm{ER}=\mathrm{FR}+\mathrm{GR}$.
- FG , then $\mathrm{ER}=\mathrm{GRFR}$
- F , then $E R=(F R)$

Let $\mathrm{E}=01^{*}+10^{*}$.
$\mathrm{ER}=(01 *+10 *) \mathrm{R}=(01 *) \mathrm{R}+(10 *) \mathrm{RER}=(01 *+10 *) \mathrm{R}=(01 *) \mathrm{R}+(10 *) \mathrm{R}$
$=(1 *) \mathrm{R} 0 \mathrm{R}+(0 *) \mathrm{R} 1 \mathrm{R}=(1 *) \mathrm{R} 0 \mathrm{R}+(0 *) 1 \mathrm{R}$
$=(1 \mathrm{R}) * 0+(0 \mathrm{R}) * 1=(1 \mathrm{R}) * 0+(0 \mathrm{R}) * 1$
$=1 * 0+0 * 1=1 * 0+0 * 1$

7. Closure under homomorphism

Definition of homomorphism:
A homomorphism on an alphabet is function that gives a string for each symbol in that alphabet.

Closure property:

If L is a regular language, and h is a homomorphism on its alphabet, then $h(L)=\{h(w) \mid w$ is in $L\}$ is also a regular language.

Proof: Let E be a regular expression for L .

Apply h to each symbol in E.
Language of resulting RE is $h(L)$
Example:
Let $h(0)=\mathrm{ab} ; \mathrm{h}(1)=\varepsilon$.
Let L be the language of regular expression $01^{*}+10^{*}$.
Then $h(L)$ is the language of regular expression $a b \varepsilon^{*}+\varepsilon(a b)^{*}$
$\mathrm{ab} \varepsilon^{*}+\varepsilon(\mathrm{ab})^{*}$ can be simplified.
$\varepsilon^{*}=\varepsilon, \operatorname{soab} \varepsilon^{*}=\mathrm{ab} \varepsilon$.
ε is the identity under concatenation.
That is, $\varepsilon \mathrm{E}=\mathrm{E} \varepsilon=\mathrm{E}$ for any RE E .
Thus, $\mathrm{ab} \varepsilon^{*}+\varepsilon(\mathrm{ab})^{*}=\mathrm{ab} \varepsilon+\varepsilon(\mathrm{ab})^{*}$
$=\mathrm{ab}+(\mathrm{ab})^{*}$.
Finally, $\mathrm{L}(\mathrm{ab})$ is contained in $\mathrm{L}((\mathrm{ab}))$, so a $R E$ for $h(L)$ is (ab)

8. Closure under inverse homomorphism

a. Start with a DFA A for L .
b. Construct a DFA B for $\mathrm{h}-1(\mathrm{~L})$ with: - The same set of states.

- The same start state.
- The same final states.
- Input alphabet $=$ the symbols to which homomorphism h applies

