
 UNIT V R LANGUAGE
 Overview, Programming structures: Control statements - Operators - Functions -
 Environment and scope issues - Recursion -Replacement functions, R data structures:
 Vectors - Matrices and arrays - Lists -Data frames -Classes, Input/output, String
 manipulations

 CLASSES IN R PROGRAMMING
 Classes and Objects are basic concepts of Object-Oriented Programming that

 revolve around real-life entities. Everything in R is an object. An object is simply a data
 structure that has some methods and attributes. A class is just a blueprint or a sketch of
 these objects. It represents the set of properties or methods that are common to all objects
 of one type.
 Unlike most other programming languages, R has a three-class system. These are S3, S4,
 and Reference Classes.
 S3 Class
 S3 is the simplest yet the most popular OOP system and it lacks formal definition and
 structure. An object of this type can be created by just adding an attribute to it. Following
 is an example to make things more clear:
 Example:
 movieList <- list(name = "Iron man", leadActor = "Robert Downey Jr")
 class(movieList) <- "movie"
 movieList
 Output:
 $name
 [1] "Iron man"
 $leadActor
 [1] "Robert Downey Jr"
 In S3 systems, methods don’t belong to the class. They belong to generic functions. It
 means that we can’t create our own methods here, as we do in other programming
 languages like C++ or Java. But we can define what a generic method (for example print)
 does when applied to our objects.
 print(movieList)
 Output:
 $name
 [1] "Iron man"
 $leadActor
 [1] "Robert Downey Jr"

 INPUT IN R
 Developers often have a need to interact with users, either to get data or to provide

 some sort of result. Most programs today use a dialog box as a way of asking the user to
 provide some type of input. Like other programming languages in R it’s also possible to
 take input from the user. For doing so, there are two methods in R.

 ● Using readline() method
 ● Using scan() method

 Using readline() method
 In R language readline() method takes input in string format. If one inputs an

 integer then it is inputted as a string, lets say, one wants to input 255, then it will input as
 “255”, like a string. So one needs to convert that inputted value to the format that he
 needs. In this case, string “255” is converted to integer 255. To convert the inputted value
 to the desired data type, there are some functions in R,
 as.integer(n) ; —> convert to integer
 as.numeric(n) ; —> convert to numeric type (float, double etc)
 as.complex(n); —> convert to complex number (i.e 3+2i)
 as.Date(n) —> convert to date …, etc
 var = readline();
 # convert the inputted value to integer
 var = as.integer(var);
 # print the value
 print(var)
 Output:
 255
 [1] 255
 Taking multiple inputs in R

 Taking multiple inputs in R language is same as taking single input, just need to
 define multiple readline() for inputs. One can use braces for define multiple readline()
 inside it.
 Syntax:
 var1 = readline(“Enter 1st number : “);
 var2 = readline(“Enter 2nd number : “);
 var3 = readline(“Enter 3rd number : “);
 var4 = readline(“Enter 4th number : “);
 or,
 {

https://www.geeksforgeeks.org/introduction-to-r-programming-language/
https://www.geeksforgeeks.org/convert-a-character-object-to-integer-in-r-programming-as-integer-function/
https://www.geeksforgeeks.org/convert-factor-to-numeric-and-numeric-to-factor-in-r-programming/
https://www.geeksforgeeks.org/convert-a-string-into-date-format-in-r-programming-as-date-function/

 var1 = readline(“Enter 1st number : “);
 var2 = readline(“Enter 2nd number : “);
 var3 = readline(“Enter 3rd number : “);
 var4 = readline(“Enter 4th number : “);
 }
 Example:
 # using braces
 {

 var1 = readline("Enter 1st number : ");
 var2 = readline("Enter 2nd number : ");
 var3 = readline("Enter 3rd number : ");
 var4 = readline("Enter 4th number : ");

 }
 # converting each value
 var1 = as.integer(var1);
 var2 = as.integer(var2);
 var3 = as.integer(var3);
 var4 = as.integer(var4);
 # print the sum of the 4 number
 print(var1 + var2 + var3 + var4)
 Output:
 Enter 1st number : 12
 Enter 2nd number : 13
 Enter 3rd number : 14
 Enter 4th number : 15
 [1] 54
 Using scan() method

 Another way to take user input in R language is using a method, called scan()
 method. This method takes input from the console. This method is a very handy method
 while inputs are needed to taken quickly for any mathematical calculation or for any
 dataset. This method reads data in the form of a vector or list. This method also uses to
 reads input from a file also.
 Syntax:
 x = scan()
 scan() method is taking input continuously, to terminate the input process, need to press
 Enter key 2 times on the console.

 Example:
 This is simple method to take input using scan() method, where some integer

 number is taking as input and print those values in the next line on the console.
 x = scan()
 print(x)
 Output:
 1: 1 2 3 4 5 6
 7: 7 8 9 4 5 6
 13:
 Read 12 items
 [1] 1 2 3 4 5 6 7 8 9 4 5 6

 In R there are various methods to print the output. Most common method to print
 output in R program, there is a function called print() is used. Also if the program of R is
 written over the console line by line then the output is printed normally, no need to use
 any function for print that output. To do this just select the output variable and press run
 button.
 OUTPUT IN R
 Print output using print() function

 Using print() function to print output is the most common method in R.
 Implementation of this method is very simple.
 Syntax: print(“any string”) or, print(variable)
 print("GFG")
 x <- "GeeksforGeeks"
 print(x)
 Output:
 [1] "GFG"
 [1] "GeeksforGeeks"
 Print output using paste() function inside print() function

 R provides a method paste() to print output with string and variable together. This
 method defined inside the print() function. paste() converts its arguments to character
 strings.
 x <- "GeeksforGeeks"
 print(paste(x, "is best (paste inside print())"))
 print(paste0(x, "is best (paste0 inside print())"))
 Output:
 [1] "GeeksforGeeks is best (paste inside print())"
 [1] "GeeksforGeeksis best (paste0 inside print())"

https://www.geeksforgeeks.org/introduction-to-r-programming-language/
https://www.geeksforgeeks.org/print-the-argument-to-the-screen-in-r-programming-print-function/
https://www.geeksforgeeks.org/print-the-argument-to-the-screen-in-r-programming-print-function/
https://www.geeksforgeeks.org/concatenate-two-strings-in-r-programming-paste-method/

 Print output using sprintf() function
 sprintf() is basically a C library function. This function is use to print string as C

 language. This is working as a wrapper function to print values and strings together like
 C language. This function returns a character vector containing a formatted combination
 of string and variable to be printed.
 x = "GeeksforGeeks" # string
 x1 = 255 # integer
 x2 = 23.14 # float
 sprintf("%s is best", x)
 sprintf("%d is integer", x1)
 sprintf("%f is float", x2)
 Output:
 > sprintf("%s is best", x)
 [1] "GeeksforGeeks is best"
 > sprintf("%d is integer", x1)
 [1] "255 is integer"
 > sprintf("%f is float", x2)
 [1] "23.140000 is float"
 Print output using cat() function

 Another way to print output in R is using of cat() function. It’s same as print()
 function. cat() converts its arguments to character strings. This is useful for printing
 output in user defined functions.
 Syntax: cat(“any string”) or, cat(“any string”, variable)
 Example:
 x = "GeeksforGeeks"
 cat(x, "is best\n")
 cat("This is R language")
 Output:
 GeeksforGeeks is best
 This is R language
 Print output using message() function

 Another way to print something in R by using message() function. This is not used
 for print output but its use for showing simple diagnostic messages which are no
 warnings or errors in the program. But it can be used for normal uses for printing output.
 Syntax: message(“any string”) or, message(“any string”, variable)
 Example:
 x = "GeeksforGeeks"

https://www.geeksforgeeks.org/print-a-formatted-string-in-r-programming-sprintf-function/
https://www.geeksforgeeks.org/printing-out-to-the-screen-or-to-a-file-in-r-programming-cat-function/

 message(x, "is best")
 message("This is R language")
 Output:
 GeeksforGeeks is best
 This is R language

 STRING MANIPULATION IN R
 String manipulation basically refers to the process of handling and analyzing

 strings. It involves various operations concerned with modification and parsing of strings
 to use and change its data. R offers a series of in-built functions to manipulate the
 contents of a string. In this article, we will study different functions concerned with the
 manipulation of strings in R.
 Concatenation of Strings

 String Concatenation is the technique of combining two strings. String
 Concatenation can be done using many ways:
 1. paste() function Any number of strings can be concatenated together using the paste()
 function to form a larger string. This function takes a separator as an argument which is
 used between the individual string elements and another argument ‘collapse’ which
 reflects if we wish to print the strings together as a single larger string. By default, the
 value of collapse is NULL.
 Syntax:
 paste(..., sep=" ", collapse = NULL)
 Example:
 str <- paste("Learn", "Code")
 print (str)
 Output:
 "Learn Code"
 In case no separator is specified the default separator ” ” is inserted between individual
 strings.
 Example:
 str <- paste(c(1:3), "4", sep = ":")
 print (str)
 Output:
 "1:4" "2:4" "3:4"
 2. cat() function Different types of strings can be concatenated together using the cat())
 function in R, where sep specifies the separator to give between the strings and file name,
 in case we wish to write the contents onto a file.

 Syntax:
 cat(..., sep=" ", file)
 Example:
 str <- cat("learn", "c ode", "tech", sep = ":")
 print (str)
 Output:
 learn:code:techNULL
 The output string is printed without any quotes and the default separator is ‘:’.NULL
 value is appended at the end.
 Example:
 cat(c(1:5), file ='sample.txt')
 Output:
 1 2 3 4 5
 Calculating Length of strings
 1. length() function The length() function determines the number of strings specified in
 the function.
 Example:
 print (length(c("Learn to", "Code")))
 Output:
 2
 There are two strings specified in the function.
 nchar() function nchar() counts the number of characters in each of the strings specified
 as arguments to the function individually.
 Example:
 print (nchar(c("Learn", "Code")))
 Output:
 5 4
 Case Conversion of strings
 1. Conversion to uppercase All the characters of the strings specified are converted to
 upper case.
 Example:
 print (toupper(c("Learn Code", "hI")))
 2. Conversion to lowercase All the characters of the strings specified are converted to
 lowercase.
 Example:
 print (tolower(c("Learn Code", "hI")))
 Output :

 "learn code" "hi"
 3. casefold() function All the characters of the strings specified are converted to
 lowercase or uppercase according to the arguments in casefold(…, upper=TRUE).
 Examples:
 print (casefold(c("Learn Code", "hI"), upper = TRUE)))
 Output :
 "LEARN CODE" "HI"

