

ROHINI

THREAD LIFE CYCLE

A thread in Java at any point of time
in one of the shown states at any

1) New

2) Runnable

3) Blocked

4) Waiting

5) Timed Waiting

6) Terminated

The following figure represents various

1. New Thread:

ROHINI COLLEGE OF ENGINERING AND

ROHINI

time exists in any one of the following states. A thread
at any instant:

various states of a thread at any instant of time:

Figure: Life Cycle of a thread

 TECHNOLOGY

thread lies only

 When a new thread is created,

 The thread has not yet started to

 When a thread lies in the
execute.

2. Runnable State:

 A thread that is ready to

 In this state, a thread might
of time.

 It is the responsibility of

 A multi-threaded program allocates
Each and every thread runs
to another thread, so that other threads can get a chance to run. When this happens,
all such threads that are ready to run, waiting for the CPU and the currently running
thread lies in runnable state.

3. Blocked/Waiting state:

 When a thread is temporarily

○ Blocked

○ Waiting

 For example, when a thread
It’s the responsibility of the thread scheduler to reactivate and schedule a blocked/
waiting thread.

 A thread in this state cannot continue its execution any further until it is moved to
runnable state. Any thread

 A thread is in the blocked
is currently locked by some
schedule picks one of the threads which is blocked for that section and moves it to
the runnable state. A thread is in the
a condition. When this condition
thread is moved to runnable

 If a currently running thread is moved to blocked/waiting state, another thread in the
runnable state is scheduled by the thread scheduler to run. It is the responsibility of
thread scheduler to determine which thread

4. Timed Waiting:

 A thread lies in timed waiting

 A thread lies in this state until the timeout is completed or until a notification is
received.

 For example, when a thread
waiting state.

5. Terminated State:

 A thread terminates because

ROHINI COLLEGE OF ENGINERING AND

created, it is in the new state.

started to run when thread is in this state.

the new state, it’s code is yet to be run and hasn’t started

ready to run is moved to runnable state.

might actually be running or it might be ready run at

of the thread scheduler to give the thread, time to run.

threaded program allocates a fixed amount of time to each individual thread.
runs for a short while and then pauses and relinquishes

to another thread, so that other threads can get a chance to run. When this happens,
all such threads that are ready to run, waiting for the CPU and the currently running

state.

temporarily inactive, then it’s in one of the following states:

thread is waiting for I/O to complete, it lies in the blocked
It’s the responsibility of the thread scheduler to reactivate and schedule a blocked/

A thread in this state cannot continue its execution any further until it is moved to
thread in these states do not consume any CPU cycle.

blocked state when it tries to access a protected section of
some other thread. When the protected section is unlocked,

schedule picks one of the threads which is blocked for that section and moves it to
the runnable state. A thread is in the waiting state when it waits for another thread

condition is fulfilled, the scheduler is notified and
moved to runnable state.

If a currently running thread is moved to blocked/waiting state, another thread in the
runnable state is scheduled by the thread scheduler to run. It is the responsibility of

to determine which thread to run.

waiting state when it calls a method with a time out

A thread lies in this state until the timeout is completed or until a notification is

thread calls sleep or a conditional wait, it is moved

because of either of the following reasons:

 TECHNOLOGY

started to

 any instant

run.

a fixed amount of time to each individual thread.
relinquishes the CPU

to another thread, so that other threads can get a chance to run. When this happens,
all such threads that are ready to run, waiting for the CPU and the currently running

states:

blocked state.
It’s the responsibility of the thread scheduler to reactivate and schedule a blocked/

A thread in this state cannot continue its execution any further until it is moved to
cycle.

of code that
unlocked, the

schedule picks one of the threads which is blocked for that section and moves it to
waiting state when it waits for another thread on

 the waiting

If a currently running thread is moved to blocked/waiting state, another thread in the
runnable state is scheduled by the thread scheduler to run. It is the responsibility of

 parameter.

A thread lies in this state until the timeout is completed or until a notification is

moved to timed

○ Because it exits normally. This happens when the code of thread has entirely
executed by the program.

○ Because there occurred some unusual erroneous event, like segmentation fault
or an unhandled exception.

 A thread that lies in terminated

Creating threads

 Threading is a facility to allow multiple tasks to run concurrently within a single
process. Threads are independent, concurrent execution through a program, and each
thread has its own stack.

In Java, There are two ways

1) By extending Thread class.

2) By implementing Runnable interface.

Java Thread Benefits

1. Java Threads are lightweight compared to processes as they take less time and re
source to create a thread.

2. Threads share their parent

3. Context switching between threads is usually less expensive than between process
es.

4. Thread intercommunication

THREAD CLASS

Thread class provide constructors and methods to create and perform operations on a
thread. Thread class extends Object

Commonly used Construct

 Thread()

 Thread(String name)

 Thread(Runnable r)

 Thread(Runnable r, String

Commonly used methods

1. public void run(): is used

2. public void start(): starts
the thread.

3. public void sleep(long miliseconds):
(temporarily cease execution)

4. public void join(): waits

1. public void join(long miliseconds):
seconds.

ROHINI COLLEGE OF ENGINERING AND

Because it exits normally. This happens when the code of thread has entirely
program.

Because there occurred some unusual erroneous event, like segmentation fault
an unhandled exception.

terminated state does no longer consumes any cycles

Threading is a facility to allow multiple tasks to run concurrently within a single
independent, concurrent execution through a program, and each

stack.

ways to create a thread:

class.

Runnable interface.

Java Threads are lightweight compared to processes as they take less time and re
create a thread.

parent process data and code

Context switching between threads is usually less expensive than between process

communication is relatively easy than process communication.

Thread class provide constructors and methods to create and perform operations on a
Object class and implements Runnable interface.

tors of thread class:

String name)

 of thread class:

used to perform action for a thread.

starts the execution of the thread. JVM calls the run()

public void sleep(long miliseconds): Causes the currently executing thread to sleep
execution) for the specified number of milliseconds.

waits for a thread to die.

public void join(long miliseconds): waits for a thread to die for the specified mili

 TECHNOLOGY

Because it exits normally. This happens when the code of thread has entirely

Because there occurred some unusual erroneous event, like segmentation fault

 of CPU.

Threading is a facility to allow multiple tasks to run concurrently within a single
independent, concurrent execution through a program, and each

Java Threads are lightweight compared to processes as they take less time and re-

Context switching between threads is usually less expensive than between process-

communication.

Thread class provide constructors and methods to create and perform operations on a

 method on

Causes the currently executing thread to sleep

waits for a thread to die for the specified mili-

3. public int setPriority(int

4. public string getname():

5. public void setname(string
6. public thread currentthread():

thread.

ROHINI COLLEGE OF ENGINERING AND

setPriority(int priority): changes the priority of the thread.

getname(): returns the name of the thread.

setname(string name): changes the name of the thread.
currentthread(): returns the reference of currently executing

 TECHNOLOGY

executing

7. public int getid(): returns

8. public thread.state gets

9. public boolean isalive():

10. public void yield(): causes
and allow other threads to

11. public void suspend(): is

12. public void resume(): is

13. public void stop(): is used

14. public boolean isdaemon():

15. public void setdaemon(boolean

16. public void interrupt():

17. public boolean isinterrupted():

18. public static boolean interrupted():

naming thread

The Thread class provides methods
each thread has a name i.e. thread
thread by using setName() method. The syntax of setName() and getName() methods are given
below:

public string getname(): is used

public void setname(string name):

extending thread

The first way to create a thread is to create a new class that extends Thread, and then to
create an instance of that class. The extending class must override the run() method, which is
the entry point for the new thread.
thread.

Sample java program that creates

// Create a second thread by extending Thread

class NewThread extends Thread

{

NewThread()

{ // Create a new, second thread super(“Demo

Thread”); System.out.println(“Child

+ this); start(); // Start the

}

// This is the entry point for the second thread.

public void run()

ROHINI COLLEGE OF ENGINERING AND

CS8392 OBJECT ORIENTED PROGRAMMING

returns the id of the thread.

state(): returns the state of the thread.

isalive(): tests if the thread is alive.

causes the currently executing thread object to temporarily
to execute.

is used to suspend the thread(depricated).

is used to resume the suspended thread(depricated).

used to stop the thread(depricated).

isdaemon(): tests if the thread is a daemon thread.

setdaemon(boolean b): marks the thread as daemon or user thread.

 interrupts the thread.

isinterrupted(): tests if the thread has been interrupted.

interrupted(): tests if the current thread has been interrupted.

methods to change and get the name of a thread.
each thread has a name i.e. thread-0, thread-1 and so on. But we can change the name of the
thread by using setName() method. The syntax of setName() and getName() methods are given

used to return the name of a thread.

name): is used to change the name of a thread.

The first way to create a thread is to create a new class that extends Thread, and then to
create an instance of that class. The extending class must override the run() method, which is

thread. It must also call start() to begin execution

creates a new thread by extending Thread:

// Create a second thread by extending Thread

Thread

{ // Create a new, second thread super(“Demo

System.out.println(“Child thread: “

the thread

// This is the entry point for the second thread.

AND TECHNOLOGY

PROGRAMMING

temporarily pause

thread(depricated).

thread.

interrupted.

thread. By default,
1 and so on. But we can change the name of the

thread by using setName() method. The syntax of setName() and getName() methods are given

The first way to create a thread is to create a new class that extends Thread, and then to
create an instance of that class. The extending class must override the run() method, which is

execution of the new

{

try

{

for(int i = 5; i > 0; i--)

{

System.out.println(“Child Thread: “ + i);

Thread.sleep(500);

}

}

catch (InterruptedException

{

System.out.println(“Child

}

System.out.println(“Child

}

}

public class ExtendThread

{

public static void main(String

{

new NewThread(); // create a new thread

try

{

for(int i = 5; i > 0; i--)

{

System.out.println(“Main Thread: “ + i);

Thread.sleep(1000);

}

}

catch (InterruptedException

{

System.out.println(“Main

}

System.out.println(“Main

}

ROHINI COLLEGE OF ENGINERING AND

CS8392 OBJECT ORIENTED PROGRAMMING

)

System.out.println(“Child Thread: “ + i);

Thread.sleep(500);

(InterruptedException e)

System.out.println(“Child interrupted.”);

System.out.println(“Child thread is exiting”);

main(String args[])

new NewThread(); // create a new thread

)

System.out.println(“Main Thread: “ + i);

Thread.sleep(1000);

(InterruptedException e)

System.out.println(“Main thread interrupted.”);

System.out.println(“Main thread is exiting.”);

AND TECHNOLOGY

PROGRAMMING

}

Sample Output:

(output may vary based on processor speed and task load)

Child thread: Thread[Demo Thread,5,main]

Main Thread: 5

Child Thread: 5

Child Thread: 4

Main Thread: 4

Child Thread: 3

Child Thread: 2

Main Thread: 3

Child Thread: 1

Child thread is exiting.

Main Thread: 2

Main Thread: 1

Main thread is exiting.

The child thread is created by instantiating an object of NewThread, which is derived from
Thread. The call to super() is inside NewThread. This invok
Thread constructor:

public Thread(String threadName)

Here, threadName specifies the

implementing runnable

 The easiest way to create
interface.

 Runnable abstracts a unit
that implements Runnable.

 To implement Runnable,
which is declared as:

public void run()

 Inside run(), we will define the code that constitutes the new thread. The run()
call other methods, use other classes, and declare variables, just like the main thread
can. The only difference
concurrent thread of execution within the program. This thread will end when run()
returns.

 After we create a class that implements Runnable, we will instantiate an object of type
Thread from within that class.

 After the new thread is created, it will not
which is declared within

ROHINI COLLEGE OF ENGINERING AND

CS8392 OBJECT ORIENTED PROGRAMMING

(output may vary based on processor speed and task load)

thread: Thread[Demo Thread,5,main]

The child thread is created by instantiating an object of NewThread, which is derived from
Thread. The call to super() is inside NewThread. This invokes the following form of the

threadName)

the name of the thread.

create a thread is to create a class that implements the

unit of executable code. We can construct a thread on any
Runnable.

Runnable, a class need only implement a single method called

)

Inside run(), we will define the code that constitutes the new thread. The run()
call other methods, use other classes, and declare variables, just like the main thread

difference is that run() establishes the entry point
concurrent thread of execution within the program. This thread will end when run()

After we create a class that implements Runnable, we will instantiate an object of type
class.

After the new thread is created, it will not start running until we call its start() method,
 Thread. In essence, start() executes a call to run(

AND TECHNOLOGY

PROGRAMMING

The child thread is created by instantiating an object of NewThread, which is derived from
es the following form of the

the Runnable

any object

called run(),

Inside run(), we will define the code that constitutes the new thread. The run() can
call other methods, use other classes, and declare variables, just like the main thread

 for another,
concurrent thread of execution within the program. This thread will end when run()

After we create a class that implements Runnable, we will instantiate an object of type

start running until we call its start() method,
).

 The start() method is shown

void start()

Sample java program that creates

// Create a second thread

class NewThread implements

{

Thread t;

NewThread()

{

// Create a new, second thread

t = new Thread(this, “Demo Thread”);

System.out.println(“Child thread: “ + t);

t.start(); // Start the thread

}

// This is the entry point for the second thread.

public void run()

{

try

{

for(int i = 5; i > 0; i--)

{

System.out.println(“Child Thread: “ + i);

Thread.sleep(500);

}

}

catch (InterruptedException

{

System.out.println(“Child

}

System.out.println(“Child

}

}

public class ThreadDemo

{

public static void main(String

ROHINI COLLEGE OF ENGINERING AND

CS8392 OBJECT ORIENTED PROGRAMMING

shown as:

creates a new thread by implementing Runnable:

implements Runnable

thread

t = new Thread(this, “Demo Thread”);

System.out.println(“Child thread: “ + t);

the thread

// This is the entry point for the second thread.

)

System.out.println(“Child Thread: “ + i);

Thread.sleep(500);

(InterruptedException e)

System.out.println(“Child interrupted.”);

System.out.println(“Child thread is exiting.”);

main(String args[])

AND TECHNOLOGY

PROGRAMMING

{

new NewThread(); // create a new thread

try

{

for(int i = 5; i > 0; i--)

{

System.out.println(“Main Thread: “ + i);

Thread.sleep(1000);

}

}

catch (InterruptedException

{

System.out.println(“Main

}

System.out.println(“Main

}

}

Inside NewThread’s constructor, a

t = new Thread(this, “Demo

Passing this as the first argument indicates that we want the new thread to call the run()
method on this object. Next, start() is called, which starts the thread of execution beginning at
the run() method. This causes the child thread’s for loop to begin. After calling start(),
NewThread’s constructor returns to main(). When the main thread resumes, it enters its for
loop. Both threads continue running, sharing

Sample Output:

(output may vary based on processor speed and task load)

Child thread: Thread[Demo Thread,5,main]

Main Thread: 5

Child Thread: 5

Child Thread: 4

Main Thread: 4

Child Thread: 3

Child Thread: 2

Main Thread: 3

Child Thread: 1

Child thread is exiting.

ROHINI COLLEGE OF ENGINERING AND

CS8392 OBJECT ORIENTED PROGRAMMING

new NewThread(); // create a new thread

)

System.out.println(“Main Thread: “ + i);

read.sleep(1000);

(InterruptedException e)

System.out.println(“Main thread interrupted.”);

System.out.println(“Main thread is exiting.”);

a new Thread object is created by the following statement:

“Demo Thread”);

Passing this as the first argument indicates that we want the new thread to call the run()
method on this object. Next, start() is called, which starts the thread of execution beginning at
the run() method. This causes the child thread’s for loop to begin. After calling start(),
NewThread’s constructor returns to main(). When the main thread resumes, it enters its for

running, sharing the CPU, until their loops finish.

(output may vary based on processor speed and task load)

thread: Thread[Demo Thread,5,main]

AND TECHNOLOGY

PROGRAMMING

statement:

Passing this as the first argument indicates that we want the new thread to call the run()
method on this object. Next, start() is called, which starts the thread of execution beginning at
the run() method. This causes the child thread’s for loop to begin. After calling start(),
NewThread’s constructor returns to main(). When the main thread resumes, it enters its for

Main Thread: 2

Main Thread: 1

Main thread is exiting.

In a multithreaded program, often the main thread must be the last thread to finish run
ning. In fact, for some older JVMs, if the main thread finishes before a ch
completed, then the Java run-time system may “hang.” The preceding program ensures that the
main thread finishes last, because the main thread sleeps for 1,000 milliseconds between
iterations, but the child thread sleeps for only 500 millise
terminate earlier than the main thread.

Choosing an approach

The Thread class defines several methods that can be overridden by a derived class. Of
these methods, the only one that must be overridden is run(). This is, of course, the same
method required when we implement Runnable. Many Java programmers feel that classes
should be extended only when they are being enhanced or modified in some
will not be overriding any of Thread’s other methods, it is probably best simply to implement
Runnable.

Creating Multiple threads

The following program creates

// Create multiple threads.

class NewThread implements

{

String name; // name of thread

Thread t;

NewThread(String threadname)

{

name = threadname;

t = new Thread(this, name);

System.out.println(“New thread: “ + t);

t.start(); // Start the thread

}

// This is the entry point for thread.

public void run()

{

try

{

for(int i = 5; i > 0; i--)

{

System.out.println(name

ROHINI COLLEGE OF ENGINERING AND

CS8392 OBJECT ORIENTED PROGRAMMING

In a multithreaded program, often the main thread must be the last thread to finish run
ning. In fact, for some older JVMs, if the main thread finishes before a child thread has

time system may “hang.” The preceding program ensures that the
main thread finishes last, because the main thread sleeps for 1,000 milliseconds between
iterations, but the child thread sleeps for only 500 milliseconds. This causes the child thread to

thread.

The Thread class defines several methods that can be overridden by a derived class. Of
these methods, the only one that must be overridden is run(). This is, of course, the same
method required when we implement Runnable. Many Java programmers feel that classes
should be extended only when they are being enhanced or modified in some way. So,
will not be overriding any of Thread’s other methods, it is probably best simply to implement

creates three child threads:

implements Runnable

String name; // name of thread

threadname)

t = new Thread(this, name);

System.out.println(“New thread: “ + t);

the thread

// This is the entry point for thread.

)

System.out.println(name + “: “ + i);

AND TECHNOLOGY

PROGRAMMING

In a multithreaded program, often the main thread must be the last thread to finish run-
ild thread has

time system may “hang.” The preceding program ensures that the
main thread finishes last, because the main thread sleeps for 1,000 milliseconds between

conds. This causes the child thread to

The Thread class defines several methods that can be overridden by a derived class. Of
these methods, the only one that must be overridden is run(). This is, of course, the same
method required when we implement Runnable. Many Java programmers feel that classes

way. So, if we
will not be overriding any of Thread’s other methods, it is probably best simply to implement

Thread.sleep(1000);

}

}

catch (InterruptedException

{

System.out.println(name

}

System.out.println(name

}

}

public class MultiThreadDemo

{

public static void main(String

{

new NewThread(“One”); // start threads

new NewThread(“Two”);

new NewThread(“Three”);

try

{

// wait for other threads to end

Thread.sleep(10000);

}

catch (InterruptedException

{

System.out.println(“Main

}

System.out.println(“Main

}

}

The output from this program is shown

New thread: Thread[One,5,main]

New thread: Thread[Two,5,main]

New thread: Thread[Three,5,main]

One: 5

Two: 5

ROHINI COLLEGE OF ENGINERING AND

CS8392 OBJECT ORIENTED PROGRAMMING

Thread.sleep(1000);

(InterruptedException e)

System.out.println(name + “Interrupted”);

System.out.println(name + “ exiting.”);

MultiThreadDemo

main(String args[])

new NewThread(“One”); // start threads

NewThread(“Two”);

new NewThread(“Three”);

// wait for other threads to end

Thread.sleep(10000);

(InterruptedException e)

System.out.println(“Main thread Interrupted”);

System.out.println(“Main thread exiting.”);

program is shown here:

New thread: Thread[One,5,main]

New thread: Thread[Two,5,main]

New thread: Thread[Three,5,main]

AND TECHNOLOGY

PROGRAMMING

Three: 5

One: 4

Two: 4

Three: 4

One: 3

Three: 3

Two: 3

One: 2

Three: 2

Two: 2

One: 1

Three: 1

Two: 1

One exiting.

Two exiting.

Three exiting.

Main thread exiting.

As we can see, once started, all
main(). This causes the main thread

using isalive() and join()

We want the main thread to finish last. In the preceding examples, this is accomplished by
calling sleep() within main(), with a long enough delay to ensure that all child threads
terminate prior to the main thread. However, this is hardly a satisfactory solution, and it also
raises a larger question: How can one

Two ways exist to determine

 First, we can call isAlive(

Syntax:

final boolean isAlive()

The isAlive() method returns true, if the thread upon which it is called is still running. It
returns false, otherwise.

 Second, we can use join()

Syntax:

final void join() throws InterruptedException

This method waits until the thread
concept of the calling thread waiting until

Sample Java program using join()

class NewThread implements

ROHINI COLLEGE OF ENGINERING AND

CS8392 OBJECT ORIENTED PROGRAMMING

all three child threads share the CPU. The call to sleep(10000)
thread to sleep for ten seconds and ensures that it will

)

We want the main thread to finish last. In the preceding examples, this is accomplished by
calling sleep() within main(), with a long enough delay to ensure that all child threads
terminate prior to the main thread. However, this is hardly a satisfactory solution, and it also

can one thread know when another thread has ended?

 whether a thread has finished or not.

call isAlive() on the thread. This method is defined by Thread.

The isAlive() method returns true, if the thread upon which it is called is still running. It

join() to wait for a thread to finish.

InterruptedException

thread on which it is called terminates. Its name comes
thread waiting until the specified thread joins it.

 to wait for threads to finish.

implements Runnable

AND TECHNOLOGY

PROGRAMMING

sleep(10000) in
will finish last.

We want the main thread to finish last. In the preceding examples, this is accomplished by
calling sleep() within main(), with a long enough delay to ensure that all child threads
terminate prior to the main thread. However, this is hardly a satisfactory solution, and it also

ended?

Thread.

The isAlive() method returns true, if the thread upon which it is called is still running. It

comes from the

{

String name; // name of thread

Thread t;

NewThread(String threadname)

{

name = threadname;

t = new Thread(this, name);

System.out.println(“New thread: “ + t);

t.start(); // Start the thread

}

// This is the entry point for thread.

public void run()

{

try

{

for(int i = 5; i > 0; i--)

{

System.out.println(name + “: “ + i);

Thread.sleep(1000);

}

}

catch (InterruptedException

{

System.out.println(name

}

System.out.println(name

}

}

public class DemoJoin

{

public static void main(String

{

NewThread ob1 = new

NewThread ob2 = new

NewThread ob3 = new NewThread(“Three”);

ROHINI COLLEGE OF ENGINERING AND

CS8392 OBJECT ORIENTED PROGRAMMING

String name; // name of thread

threadname)

t = new Thread(this, name);

System.out.println(“New thread: “ + t);

the thread

// This is the entry point for thread.

)

System.out.println(name + “: “ + i);

Thread.sleep(1000);

(InterruptedException e)

System.out.println(name + “ interrupted.”);

System.out.println(name + “ is exiting.”);

main(String args[])

new NewThread(“One”);

new NewThread(“Two”);

NewThread(“Three”);

AND TECHNOLOGY

PROGRAMMING

System.out.println(“Thread

System.out.println(“Thread

System.out.println(“Thread

// wait for threads to finish

try

{

System.out.println(“Waiting

ob1.t.join();

ob2.t.join();

ob3.t.join();

}

catch (InterruptedException

{

System.out.println(“Main

}

System.out.println(“Thread One is alive: “ + ob1.t.isAlive());

System.out.println(“Thread Two is alive: “ + ob2.t.isAlive());

System.out.println(“Thread Three

System.out.println(“Main

}

}

sample output:

(output may vary based on processor

New thread: Thread[One,5,main]

New thread: Thread[Two,5,main]

One: 5

New thread: Thread[Three,5,main]

Two: 5

Thread One is alive: true Thread

Two is alive: true Thread Three

is alive: true Waiting for threads

to finish. Three: 5

One: 4

Two: 4

Three: 4

ROHINI COLLEGE OF ENGINERING AND

CS8392 OBJECT ORIENTED PROGRAMMING

System.out.println(“Thread One is alive: “ + ob1.t.isAlive());

System.out.println(“Thread Two is alive: “ + ob2.t.isAlive());

System.out.println(“Thread Three is alive: “ + ob3.t.isAlive());

// wait for threads to finish

System.out.println(“Waiting for threads to finish.”);

(InterruptedException e)

System.out.println(“Main thread Interrupted”);

System.out.println(“Thread One is alive: “ + ob1.t.isAlive());

System.out.println(“Thread Two is alive: “ + ob2.t.isAlive());

System.out.println(“Thread Three is alive: “ + ob3.t.isAlive());

System.out.println(“Main thread is exiting.”);

processor speed and task load)

Thread[One,5,main]

Thread[Two,5,main]

New thread: Thread[Three,5,main]

Thread One is alive: true Thread

Two is alive: true Thread Three

is alive: true Waiting for threads

AND TECHNOLOGY

PROGRAMMING

One: 3

Two: 3

Three: 3

One: 2

Two: 2

Three: 2

One: 1

Two: 1

Three: 1

One is exiting.

Two is exiting.

Three is exiting.

Thread One is alive: false

Thread Two is alive: false

Thread Three is alive: false

Main thread is exiting.

ROHINI COLLEGE OF ENGINERING AND

CS8392 OBJECT ORIENTED PROGRAMMING

AND TECHNOLOGY

PROGRAMMING

