
Classification by backpropagation 

 
 

 Backpropagation is a neural network learning algorithm. 

 A neural network is a set of connected input/output units in which each connection has a 

weight associated with it. 

 During the learning phase, the network learns by adjusting the weights so as to be able to 

predict the correct class label of the input tuples.  

 Neural network learning is also referred to as connectionist learning due to the connections 

between units.  

 Neural networks involve long training times and are therefore more suitable for 

applications where this is feasible.  

 Backpropagation learns by iteratively processing a data set of training tuples, comparing 

the network’s prediction for each tuple with the actual known target value.  

 The target value may be the known class label of the training tuple (for classification 

problems) or a continuous value (for prediction).  

 For each training tuple, the weights are modified so as to minimize the mean squared error 

between the network’s prediction and the actual target value. These modifications are made 

in the ―backwards‖ direction, that is, from the output layer, through each hidden layer 

down to the first hidden layer hence the name is backpropagation.  

 Although it is not guaranteed, in general the weights will eventually converge, and the 

learning process stops.  

Advantages: 

 

 It include their high tolerance of noisy data as well as their ability to classify patterns on 

which they have not been trained.  

 They can be used when you may have little knowledge of the relationships between 

attributes and classes.  

 They are well-suited for continuous-valued inputs and outputs, unlike most decision tree 

algorithms.  



 They have been successful on a wide array of real-world data, including handwritten 

character recognition, pathology and laboratory medicine, and training a computer to 

pronounce English text.  

 Neural network algorithms are inherently parallel; parallelization techniques can be used 

to speed up the computation process.  

Process:  

Initialize the weights: 

The weights in the network are initialized to small random numbers ranging from-1.0 to 1.0, 

or -0.5 to 0.5. Each unit has a bias associated with it. The biases are similarly initialized to 

small random numbers. Each training tuple, X, is processed by the following steps. 

Propagate the inputs forward: 

 

First, the training tuple is fed to the input layer of thenetwork. The inputs pass through the input 

units, unchanged. That is, for an input unitj, its output, Oj, is equal to its input value, Ij. Next, the 

net input and output of eachunit in the hidden and output layers are computed. The net input to a 

unit in the hiddenor output layers is computed as a linear combination of its inputs. Each such unit 

has anumber of inputs to it that are, in fact, the outputs of the units connected to it in theprevious 

layer. Each connection has a weight. To compute the net input to the unit, each input connected to 

the unit ismultiplied by its correspondingweight, and this is summed. 

 

   

 

Where wi,j is the weight of the connection from unit i in the previous layer to unit j; Oi is the output of 

unit i from the previous layer Ɵj is the bias of the unit & it acts as a threshold in that it serves to vary 

the activity of the unit. Each unit in the hidden and output layers takes its net input and then applies an 

activation function to it. 

 

 



                   
 

 

Back propagate the error: 

 

The error is propagated backward by updating the weights and biases to reflect the error of the 

network’s prediction. For a unit j in the output layer, the error Err j is computed by 

 

   

Where Oj is the actual output of unit j, and Tj is the known target value of the given training tuple. 

The error of a hidden layer unit j is 

   

Where wjk is the weight of the connection from unit j to a unit k in the next higher layer, and Errk 

is the error of unit k. Weights are updated by the following equations, where Dwi j is the change 

in weight wi j: 

   

Biases are updated by the following equations below 

 

   

 



Algorithm: 

 

 

 


