UNIT 1 #### **Object Orientation and Software Development Process** ### **OBJECT ORIENTATION** # Object-Oriented Design In the object-oriented design method, the system is viewed as a collection of objects (i.e., entities). The state is distributed among the objects, and each object handles its state data. For example, in a Library Automation Software, each library representative may be a separate object with its data and functions to operate on these data. The tasks defined for one purpose cannot refer or change data of other objects. Objects have their internal data which represent their state. Similar objects create a class. In other words, each object is a member of some class. Classes may inherit features from the superclass. #### The different terms related to object design are: # **Object Oriented Design** 1. **Objects:** All entities involved in the solution design are known as objects. For example, person, banks, company, and users are considered as objects. Every entity has some attributes associated with it and has some methods to perform on the attributes. - 2. **Classes:** A class is a generalized description of an object. An object is an instance of a class. A class defines all the attributes, which an object can have and methods, which represents the functionality of the object. - 3. **Messages:** Objects communicate by message passing. Messages consist of the integrity of the target object, the name of the requested operation, and any other action needed to perform the function. Messages are often implemented as procedure or function calls. - 4. **Abstraction** In object-oriented design, complexity is handled using abstraction. Abstraction is the removal of the irrelevant and the amplification of the essentials. - 5. **Encapsulation:** Encapsulation is also called an information hiding concept. The data and operations are linked to a single unit. Encapsulation not only bundles essential information of an object together but also restricts access to the data and methods from the outside world. - 6. Inheritance: OOD allows similar classes to stack up in a hierarchical manner where the lower or sub-classes can import, implement, and re-use allowed variables and functions from their immediate superclasses. This property of OOD is called an inheritance. This makes it easier to define a specific class and to create generalized classes from specific ones. - 7. **Polymorphism:** OOD languages provide a mechanism where methods performing similar tasks but vary in arguments, can be assigned the same name. This is known as polymorphism, which allows a single interface is performing functions for different types. Depending upon how the service is invoked, the respective portion of the code gets executed. # SOFTWARE DEVELOPMENT PROCESS The software development process is an iterative logical process that aims to create programmed software to meet unique business or personal objectives, goals, or processes. Software Development Life Cycle (SDLC) is a process used by the software industry to design, develop and test high quality softwares. The SDLC aims to produce a high-quality software that meets or exceeds customer expectations, reaches completion within times and cost estimates. - SDLC is the acronym of Software Development Life Cycle. - It is also called as Software Development Process. - SDLC is a framework defining tasks performed at each step in the software development process. • ISO/IEC 12207 is an international standard for software life-cycle processes. It aims to be the standard that defines all the tasks required for developing and maintaining software. #### What is SDLC? SDLC is a process followed for a software project, within a software organization. It consists of a detailed plan describing how to develop, maintain, replace and alter or enhance specific software. The life cycle defines a methodology for improving the quality of software and the overall development process. The following figure is a graphical representation of the various stages of a typical SDLC. A typical Software Development Life Cycle consists of the following stages - Stage 1: Planning and Requirement Analysis Requirement analysis is the most important and fundamental stage in SDLC. It is performed by the senior members of the team with inputs from the customer, the sales department, market surveys and domain experts in the industry. This information is then used to plan the basic project approach and to conduct product feasibility study in the economical, operational and technical areas. Planning for the quality assurance requirements and identification of the risks associated with the project is also done in the planning stage. The outcome of the technical feasibility study is to define the various technical approaches that can be followed to implement the project successfully with minimum risks. #### Stage 2: Defining Requirements Once the requirement analysis is done the next step is to clearly define and document the product requirements and get them approved from the customer or the market analysts. This is done through an **SRS** (**Software Requirement Specification**) document which consists of all the product requirements to be designed and developed during the project life cycle. #### Stage 3: Designing the Product Architecture SRS is the reference for product architects to come out with the best architecture for the product to be developed. Based on the requirements specified in SRS, usually more than one design approach for the product architecture is proposed and documented in a DDS - Design Document Specification. This DDS is reviewed by all the important stakeholders and based on various parameters as risk assessment, product robustness, design modularity, budget and time constraints, the best design approach is selected for the product. A design approach clearly defines all the architectural modules of the product along with its communication and data flow representation with the external and third party modules (if any). The internal design of all the modules of the proposed architecture should be clearly defined with the minutest of the details in DDS. #### Stage 4: Building or Developing the Product In this stage of SDLC the actual development starts and the product is built. The programming code is generated as per DDS during this stage. If the design is performed in a detailed and organized manner, code generation can be accomplished without much hassle. Developers must follow the coding guidelines defined by their organization and programming tools like compilers, interpreters, debuggers, etc. are used to generate the code. Different high level programming languages such as C, C++, Pascal, Java and PHP are used for coding. The programming language is chosen with respect to the type of software being developed. # Stage 5: Testing the Product RVE OPTIMIZE OUTSPRE This stage is usually a subset of all the stages as in the modern SDLC models, the testing activities are mostly involved in all the stages of SDLC. However, this stage refers to the testing only stage of the product where product defects are reported, tracked, fixed and retested, until the product reaches the quality standards defined in the SRS. #### Stage 6: Deployment in the Market and Maintenance Once the product is tested and ready to be deployed it is released formally in the appropriate market. Sometimes product deployment happens in stages as per the business strategy of that organization. The product may first be released in a limited segment and tested in the real business environment (UAT- User acceptance testing). Then based on the feedback, the product may be released as it is or with suggested enhancements in the targeting market segment. After the product is released in the market, its maintenance is done for the existing customer base. #### SDLC Models There are various software development life cycle models defined and designed which are followed during the software development process. These models are also referred as Software Development Process Models". Each process model follows a Series of steps unique to its type to ensure success in the process of software development. Following are the most important and popular SDLC models followed in the industry - - Waterfall Model - Iterative Model - Spiral Model - V-Model - Big Bang Model Other related methodologies are Agile Model, RAD Model, Rapid Application Development and Prototyping Models.