1.6. MOHR'S CIRCLE

Mohr's circle is a graphical method of finding normal, tangential and resultant stresses on an oblique plane. Mohr's circle will be drawn for the following cases:

- (i) A body subjected to two mutually perpendicular principal tensile stresses of unequal intensities
- (ii) A body subjected to two mutually perpendicular principal stresses which are unequal and unlike (i.e., one is tensile and other is compressive).
- (iii) A body subjected to two mutually perpendicular principal tensile stresses accompanied by a simple shear stress.

1.26.1 Mohr's Circle When A Body Is Subjected To Two Mutually Perpendicular Principal Tensile Stresses Of Unequal Intensities.

Consider a rectangular body subjected to two mutually perpendicular principal tensile stresses of unequal intensities. It is required to find the resultant stress on an oblique plane.

Let $\sigma_1 = \text{Major tensile stress}$

 σ_2 = Minor tensile stress and

 θ = Angle made by the oblique plane with the axis of minor tensile stress.

Mohr's Circle is drawn as follows:

Take any point A and draw a horizontal line through A. Take $AB = \sigma_1$

and $AC = \sigma_2$ towards right from A to some suitable scale. With BC as diameter describe a circle. Let O is the centre of the circle. Now through O, draw a line OE making an angle 2θ with OB.

From E, draw ED perpendicular on AB. Join AE. Then the normal and tangential stresses on the oblique plane are given by AD and ED respectively. The resultant stress on the oblique plane is given by AE

From Fig.

Length AD = Normal stress on oblique plane

Length ED = Tangential stress on oblique plane.

Length AE = Resultant stress on oblique plane.

Radius of Mohr's circle = $\frac{\sigma 1 - \sigma 2}{2}$

Angle \emptyset = obliquity.

Problem1.25.The tensile stresses at a point across two mutually perpendicular planes are 120N/mm² and 60N/mm². Determine the normal, tangential and resultant stresses on a plane inclined at 30° to the axis of minor stress by Mohr's circle method

Given Data

Major principal stress, $\sigma_1 = 120 \text{N/mm}^2 \text{(tensile)}$

Minor principal stress, $\sigma_2 = 60 \text{N/mm}^2 \text{(tensile)}$

Angle of oblique plane with the axis of minor principal stress,

$$\theta = 30^{\circ}$$

To find

The normal, tangential and resultant stresses

Solution

Scale. Let $1 \text{cm} = 10 \text{N/mm}^2$

$$\sigma_1 = \frac{120}{10} = 12$$
cm and

$$\sigma_2 = \frac{60}{10} = 6cm$$

Mohr's circle is drawn as:

Take any point A and draw a horizontal line through A. Take $AB = \sigma_1 = 12$ cm and AC

$$=$$
 σ_2 =6cm.

With BC as

diameter (i.e.,BC=12-6=6cm) describe a circle. Let O is the centre of the circle. Through O, draw a line OE making an angle 2θ (i.e., 2×30 =60°) with OB. From E, draw ED perpendicular to CB. Join AE. Measure the length AD, ED and AE.

By measurements:

Length
$$AD = 10.50cm$$

Length
$$ED = 2.60cm$$

Length
$$AE = 10.82cm$$

Then normal stress
$$=$$
 Length AD \times Scale

$$= 10.50 \times 10 = 105$$
N/mm²

Tangential or shear stress = Length ED \times Scale

$$= 2.60 \times 10 = 26 \text{ N/mm}^2.$$

Resultant stress = Length
$$AE \times Scale$$
.

$$=10.82\times10=$$
 108.2N/mm².

1.26.2. Mohr's Circle when a Body is subjected to two Mutually perpendicular Principal stresses which are Unequal and Unlike (i.e., one is Tensile and other is Compressive).

Consider a rectangular body subjected to two mutually perpendicular principal stresses which are unequal and one of them is tensile and the other is compressive. It is required to find the resultant stress on an oblique plane.

Let $\sigma_1 = \text{Major principal tensile stress}$

 σ_2 = Minor principal compressive stress and

 θ = Angle made by the oblique plane with the a×is of minor tensile stress.

Mohr's Circle is drawn as follows:

Take any point A and draw a horizontal line through A on both sides of A as shown in fig. Take $AB = \sigma_1$ (+) towards right of A and $AC = \sigma_2$ (-)towards left of A to some suitable scale. Bisect BC at O. With O as centre and radius equal to CO or OB, draw a circle. Through O draw a line OE making an angle 2θ with OB.

From E, draw ED perpendicular to AB.Join AE and CE. Then the normal and tangential stresses on the oblique plane are given by AD and ED respectively. The resultant stress on the oblique plane is given by AE

From Fig.

Length AD = Normal stress on oblique plane

Length ED = Tangential stress on oblique plane.

Length AE = Resultant stress on oblique plane.

Radius of Mohr's circle =
$$\frac{\sigma_1 + \sigma_2}{2}$$

Angle
$$\emptyset$$
 = obliquity.

Problem1.26. The stresses at a point in a bar are 200N/mm² (tensile) and 100N/mm² (compressive). Determine the resultant stress in magnitude and direction on a plane inclined at 60° to the axis of major stress. Also determine the maximum intensity of shear stress in the material at the point.

Given Data

Major principal stress, $\sigma_1 = 200 \text{N/mm}^2$

Minor principal stress, $\sigma_2 = -100 \text{N/mm}^2$

(-ve sign is due to compressive stress)

Angle of oblique plane with the axis of minor principal stress,

$$\theta = 90^{\circ} - 60^{\circ} = 30^{\circ}$$

To find

The Magnitude and direction Resultant stress and maximum intensity of shear stress

Solution

Scale. Let $1 \text{cm} = 20 \text{N/mm}^2$

Then

$$\sigma_1 = \frac{200}{20} = 10$$
cm and

$$\sigma_2 = -\frac{100}{20} = -5$$
cm

Mohr's circle is drawn as:

Take any point A and draw a horizontal line through A on both sides of A as shown in fig. Take $AB = \sigma_1 = 10$ cm towards right of A and $AC = \sigma_2 = -5$ cm towards left of A to some suitable scale. Bisect BC at O. With O as centre and radius equal to CO or OB, draw a circle. Through O draw a line OE making an angle $2\theta(i.e., 2\times30=60^{\circ})$ with OB.

From E, draw ED perpendicular to AB.Join AE and CE. Then the normal and tangential stresses on the oblique plane are given by AD and ED respectively. The resultant stress on the oblique plane is given by AE

By measurements:

Length AD = 6.25cm

Length ED = 6.5cm and

Length AE = 9.0cm

Then normal stress = Length $AD \times Scale$

 $= 6.25 \times 20 = 125 \text{N/mm}^2$

Tangential or shear stress = Length ED \times Scale

 $= 6.5 \times 20 = 130 \text{ N/mm}^2.$

Resultant stress = Length $AE \times Scale$.

 $= 9 \times 20 = 180 \text{N/mm}^2$

1.26.3. Mohr's Circle when a Body is subjected two mutually perpendicular principal Tensile Stresses Accompanied by a simple shear stress.

Consider a rectangular body subjected to two mutually perpendicular principal tensile stresses of unequal intensities accompanied by a simple shear stress. It is required to find the resultant stress on an oblique plane.

Let $\sigma_1 = \text{Major tensile stress}$

 σ_2 = Minor tensile stress and

r = Shear stress across face BC and AD

 θ = Angle made by the oblique plane with the axis of minor tensile stress.

According to the principle of shear stress, the faces AB and CD will also be subjected to a shear stress of r

Mohr's Circle is drawn as follows:

Take any point A and draw a horizontal line through A. Take $AB = \sigma_1$

and AC = σ_2 towards right from A to some suitable scale. Draw perpendiculars at B and C and cut off BF and CG equal to shear stress r to the same scale. Bisect BC at O. Now with O as centre and radius equal to OG or OF draw a circle. Through O, draw a line OE making an angle 20 with OF as shown in Fig.

From E, draw ED perpendicular on CB.Join AE. Then the normal and tangential stresses on the oblique plane are given by AD and ED respectively. The resultant stress on the oblique plane is given by AE

From Fig.

Length AD = Normal stress on oblique plane

Length ED = Tangential stress on oblique plane.

Length AE = Resultant stress on oblique plane.

Radius of Mohr's circle =
$$\frac{\sigma_1 - \sigma_2}{2}$$

Angle

 \emptyset = obliquity

Problem1.27.A rectangular block of material is subjected to a tensile stress of 65N/mm² on one plane and a tensile stress of 35N/mm² on the plane right angles on the former. Each of the above stresses is accompanied by a shear stress of 25N/mm². Determine the Normal and Tangential stress a plane inclined at 45° to the axis of major stress.

Given Data

Major principal stress, $\sigma_1 = 65 \text{N/mm}^2$

Minor principal stress, $\sigma_2=35N/mm^2$

Shear stress,

$$r = 25 \text{N/mm}^2$$

Angle of oblique plane with the axis of minor principal stress,

$$\theta = 90^{\circ} - 45^{\circ} = 45^{\circ}$$

To Find

The Normal stress and Tangential stress.

Solution

Scale. Let 1cm =10N/mm²

Then
$$\sigma_1 = \frac{65}{10} = 6.5 \, \text{cm}$$
, $\sigma_2 = \frac{35}{10} = 3.5 \, \text{cm}$ and $r = \frac{25}{10} = 2.5 \, \text{cm}$

Mohr's circle is drawn as:

Take any point A and draw a horizontal line through A on both sides of A as shown in fig. Take $AB = \sigma_1 = 6.5$ cm and $AC = \sigma_2 = 3.5$ cm towards right of A to some suitable scale. Draw perpendiculars at B and C and cut off BF and CG equal to shear stress r = 2.5cm to the same scale. Bisect BC at O. Now with O as centre and radius equal to OG or OF draw a circle. Through O, draw a line OE making an angle 2θ (i.e $2\times45=90$) with OF as shown in Fig.

From E, draw ED perpendicular on CB.Join AE. Then the normal and tangential stresses on the oblique plane are given by AD and ED respectively. The resultant stress on the oblique plane is given by AE

By measurements:

Length AD = 7.5 cm and

Length ED = 1.5 cm

Then normal stress = Length $AD \times Scale$

 $= 7.5 \times 10 = 75$ N/mm²

Tangential or shear stress= Length ED \times Scale

= $1.5 \times 10 = 15 \text{ N/mm}^2$.

IMPORTANT TERMS

$Stress(\sigma)$	$\sigma = \frac{\rho}{-}$	p = Load
	A	A = area of cross section
Strain(e)	dl	dl = change in length
	$e = \frac{1}{l}$	$l = original\ length$
Lateral strain	dd dt db	d = diameter
	$= \frac{1}{d} = \frac{1}{t} = \frac{1}{b}$	t = thickness
		b = width
Young's Modulus(E)	$E = \frac{\sigma}{L}$	$\sigma = stress$
	e	e = strain
Shear modulus (or)	$C = \frac{r}{L}$	r = shear stress
Modulus of rigidity(C)	arphi	$\varphi = shear strain$

Total change in length of	$dl = p L_1 +$	$\frac{L_2}{+} + \frac{L_3}{+} + \cdots 1$	For same material $(E = same)$ with		
a bar	$dl = \frac{p}{E} \left[\frac{L_1}{A_1} + \frac{L_2}{A_2} + \frac{L_3}{A_3} + \cdots \right]$ $dl = p \left[\frac{L_1}{A_1 E_1} + \frac{L_2}{A_2 E_2} + \cdots \right]$		different length and diameter		
Total change in length	$dl = n \begin{bmatrix} L_1 & L_2 & + \cdots \end{bmatrix}$		For different material with		
	A_1E_1 A_2E_2		different length and diameter		
For composite bar	Total load $P = p_1 + p_2 + \cdots$				
	Strain $e_1 = e_2 = \cdots$				
	Change in lengt				
Total change in length of	$dl = rac{4\ P\ L}{\pi E d_1 d_2}$		P = load act on the section		
uniform taper rod	$a\iota = \frac{\alpha\iota - \pi E d_1 d_2}{\pi E d_1 d_2}$		L = length of the section		
			E = Young's modulus		
T-4-1 -1	Р	L a	$d_1, d_2 = \text{lager \& smaller dia.}$		
Total change in length of	$dl = \frac{PL}{E t (a - b)} \log_{e} \frac{a}{b}$		t = thickness of bar		
uniform taper rectangular bar	E t (a	(a-b) = e b	a = width at bigger end b = width at smaller end		
Factor of safety	III+i	mata Strass	0 – width at smaller end		
ractor or sarcty	$F.S = \frac{Ultimate\ Stress}{Working\ Stress}$		1		
Daissan's ratio(u)			2 –		
Poisson's ratio(μ)	$\mu = \frac{Later}{T_{inc}}$	par strain	$e_{latl} = \mu \times e$		
For three dimensional	$\frac{\text{Linear Strain}}{2}$		Similar for other direction		
stress system	$\frac{\epsilon_1}{E}$	$\frac{\mu}{A_2}$ $\frac{\mu}{A_3}$	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
Total change in length	$\mu = \frac{Laterat strain}{Linear strain}$ $e_1 = \frac{\sigma_1}{E} - \mu \frac{\sigma_2}{A_2} - \mu \frac{\sigma_3}{A_3}$ wl^2		w = weight per unit volume of bar		
due to self-weight	$dl = \frac{1}{2F}$				
Volumetric strain(e _v)	$dl = \frac{wl^2}{2E}$ $e_v = \frac{at}{l}(1 - 2\mu)$ $e_v = \frac{1}{E}(\sigma_x + \sigma_y + \sigma_z)(1 - 2\mu)$		For one dimension rectangular bar		
= \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$\rho = \frac{1}{(\sigma + \sigma + \sigma)(1)}$		For three dimension cuboid		
10	\overline{E} \overline{X} \overline{Y} \overline{Z}		Load in x direction		
	-2μ)		$\sigma_x = \frac{1}{Area in x direction}$		
	24,		Similar for $\sigma_y \sigma_z$		
	$a = \frac{dl}{dl}$		For cylindrical rod		
	$e_v = \frac{d}{l} - 2\frac{d}{d}$				
D-11 1 1 (II)		σ			
Bulk modulus(K)	$K = \frac{\sigma}{m}$:AD		
	(dV_{V})				
		. 777			
Relation between elastic	$E = 3K(1 - 2\mu)$				
constant E, K, C	- ()				
	$E = 2C(1 + \mu)$				
PRINCIPAL STRESSES AND STRAINS					
A member subjected to a direct stress in one plane					
Direct stress(σ)	$\sigma = \frac{P}{\overline{A}}$		P = load applied		
Normal stress	$\sigma_n = \sigma \cos^2 \theta$	$\sigma_n = r\sin 2\theta$			
Tangential (or) shear	$\sigma = \sin 2\theta$	$\sigma_t = -r\cos 2\theta$			
	$\sigma_t = \frac{\sin 2\theta}{2}$				
stress					
		•			

		T .				
Max. Normal stress	$=\sigma$	A = area of cross section				
Max. shear (or)	σ	θ = angle of oblique plane with				
T	$=\frac{\sigma}{2}$	the normal cross section of the bar				
Tangential stress		r = shear stress				
A member subjected to two like stress in mutually perpendicular direction						
<u> </u>	7 7	1				
Normal stress	$\sigma = \frac{\sigma_1 + \sigma_2}{2} + \frac{\sigma_1 - \sigma_2}{2} \cos 2\theta$	$\sigma_1 = Major \ tensile \ stress$				
		$\sigma_2 = Minor\ tensile\ stress$				
Tangential (or) shear	$\sigma_t = \frac{\sigma_1 - \sigma_2}{2} \sin 2\theta$	θ = angle of oblique plane with				
stress	2	the normal cross section of the bar				
	4, //	When commissive stress put				
Resultant stress	$\sigma_R = \sqrt{\sigma_n^2 + \sigma_t^2}$	When compressive stress put – ve sign				
Position of obliquity	$\emptyset = \tan^{-1} \frac{\sigma_t}{\sigma_n}$ $(\sigma_t)_{max} = \frac{\sigma_t}{2}$	W/I 4				
	$\overline{\sigma_n}$	When tensile force is given, we				
Max. shear stress	(σ) $ \sigma^{1}$ σ^{2}	have to find tensile stress =				
Wax. silear stress	$\binom{o}{t}_{max} = \frac{1}{2}$	force/that cross section area				
A member subjected to two like stress in mutually perpendicular direction with shear stress						
Normal stress	$\sigma_n = \frac{\sigma_1 + \sigma_2}{2} + \frac{\sigma_1 - \sigma_2}{2} \cos 2\theta$	$\sigma_1 = M$ ajor tensile stress				
		$\sigma_2 = Minor\ tensile\ stress$				
T (: 1 () 1	$\sigma - \sigma + r \sin 2\theta$	θ = angle of oblique plane with				
Tangential (or) shear	$\sigma_t = \frac{1}{2} \sin 2\theta - r \cos 2\theta$	the normal cross section of the bar				
stress	CALLE TO THE STATE OF THE STATE	XXII				
Descritor at atmosp	TOLAND WONDER	When compressive stress put – ve				
Resultant stress	$\sigma_R = \sqrt{\sigma_n^2 + \sigma_t^2}$	sign				
Position of principal	$tan2\theta = $	W/I				
nlana	$\sigma_1 - \sigma_2$	When tensile force is given, we				
plane	OPTIMIZE OUTSPI	have to find tensile stress =				
Max. shear (or)	$\sqrt{\sigma_1 - \sigma_2^2}$	force/that cross section area				
Tangantial strass	$\left(\sigma_{t}\right)_{max} = \sqrt{\left(\frac{\sigma_{1} - \sigma_{2}}{2}\right)^{2} + r^{2}}$	When inclined stress is given it				
Tangential stress	2					
Position of max. shear	$tan2\theta = \frac{\sigma_2 - \sigma_1}{2r}$	should be resolved into tensile stress and shear stress				
(or) Tangential stress	$\overline{2r}$	saces and shear sheets				
(or) rangeman suess						
Major principal stress	$\frac{\sigma_1 + \sigma_2}{2} + \sqrt{\left(\frac{\sigma_1 - \sigma_2}{2}\right)^2 + r^2}$					
	2 2 1 1					
Minor principal stress	$\frac{\sigma_1 + \sigma_2}{2} - \sqrt{\left(\frac{\sigma_1 - \sigma_2}{2}\right)^2 + r^2}$					
Mohr,s Circle						
1710III,5 CHOIC						

A body subjected to two mutually perpendicular principal tensile stresses

Step1: select suitable scale

Step2: to draw a horizontal line AB = σ_1

Step3: to draw $AC = \sigma_2$

Step4: draw a circle with BC as diameter with O as centre

Step4: draw a line OE making an angle 2θ with OB

Step5: from E to draw ED perpendicular to AB

Result:

Length AD = Normal stress

Length ED = Tangential (or) shear stress

Length AE = Resultant stress

Length OC = OB = Radius of mohr's circle = Max.shear

stress

Angle of obliquity = $2\emptyset = \angle EAD$

A body subjected to two mutually perpendicular principal tensile stresses which are unlike (Tensile and compressive)

Step1: select suitable scale

Step2: to draw a horizontal line AB = σ_1

Step3: to draw $AC = \sigma_2$

Step4: draw a perpendicular at B and C as BF and CG = r

Step5: joint the point G & F which intersect line BC at O.

Step6: draw a circle with O as centre and OG = OF as

radius. Step7: draw a line OE making an angle 2θ with OF

Step8: from E to draw ED perpendicular to AB

Result:

Length AD = Normal stress

Length ED = Tangential (or) shear stress

Length AE = Resultant stress

Length OG = OF = Radius of mohr's circle = Max.shear

stress

Angle of obliquity = $2\emptyset = \angle EAD$

Length AM= Max. Normalstress

Length AL =Min. Normal stress

THEORETICAL QUESTIONS

TWO MARKS:

- 1. Define stress and its types
- 2. Define strain.
- 3. Define tensile stress and tensile strain.
- 4. Define the three Elastic moduli.
- 5. Define shear strain and Volumetric strain

