
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356- OBJECT ORIENTED SOFTWARE ENGINEERING Page 1

2. INTEGRATION TESTING AND SYSTEM TESTING

 Integration testing

Integration testing is the process of testing the interface between

two software units or modules. It focuses on determining the
correctness of the interface. The purpose of integration testing is to

expose faults in the interaction between integrated units. Once all the

modules have been unit-tested, integration testing is performed.

Integration testing is a software testing technique that focuses on

verifying the interactions and data exchange between different
components or modules of a software application.

The goal of integration testing is to identify any problems or bugs

that arise when different components are combined and interact with
each other. Integration testing is typically performed after unit testing

and before system testing. It helps to identify and resolve integration

issues early in the development cycle, reducing the risk of more
severe and costly problems later on.

 Integration testing can be done by picking module by module.

This can be done so that there should be a proper sequence to be
followed. And also if you don’t want to miss out on any integration

scenarios then you have to follow the proper sequence.

 Exposing the defects is the major focus of the integration
testing and the time of interaction between the

integrated units.

Integration test approaches – There are four types of integration
testing approaches. Those approaches are the following:

1. Big-Bang Integration Testing – It is the simplest integration

testing approach, where all the modules are combined and the
functionality is verified after the completion of individual module

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356- OBJECT ORIENTED SOFTWARE ENGINEERING Page 2

Testing. In simple words, all the modules of the system are simply put

together and tested.

This approach is practicable only for very small systems. If an

error is found during the integration testing, it is very difficult to
localize the error as the error may potentially belong to any of the

modules being integrated. So, debugging errors reported during Big

Bang integration testing is very expensive to fix.
Big-bang integration testing is a software testing approach in

which all components or modules of a software application are

combined and tested at once.

This approach is typically used when the software components
have a low degree of interdependence or when there are constraints in

the development environment that prevent testing individual

components.

The goal of big-bang integration testing is to verify the overall
functionality of the system and to identify any integration problems that

arise when the components are combined.

While big-bang integration testing can be useful in some
situations, it can also be a high-risk approach, as the complexity of the

system and the number of interactions between components can make it

difficult to identify and diagnose problems.

Advantages:

1. It is convenient for small systems.

2. Simple and straightforward approach.

3. Can be completed quickly.
4. Does not require a lot of planning or coordination.
5. May be suitable for small systems or projects with a low

degree of interdependence between components.

Disadvantages:

1. There will be quite a lot of delay because you would have to

wait for all the modules to be integrated.
2. High-risk critical modules are not isolated and tested on

priority since all modules are tested at once.

3. Not Good for long projects.

4. High risk of integration problems that are difficult to dentify and
diagnose.

5. This can result in long and complex debugging

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356- OBJECT ORIENTED SOFTWARE ENGINEERING Page 3

and troubleshooting efforts.

6. This can lead to system downtime and increased development
costs.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356- OBJECT ORIENTED SOFTWARE ENGINEERING Page 4

7. May not provide enough visibility into the interactions and

data exchange between components.

8. This can result in a lack of confidence in the system’s
stability and reliability.

9. This can lead to decreased efficiency and productivity.

10. This may result in a lack of confidence in the
development team.

11. This can lead to system failure and decreased user

satisfaction.
2. Bottom-Up Integration Testing – In bottom-up testing, each

module at lower levels are tested with higher modules until all

modules are tested.
3. The primary purpose of this integration testing is that each

subsystem tests the interfaces among various modules making up the

subsystem. This integration testing uses test drivers to drive and pass
appropriate data to the lower-level modules.

Advantages:

 In bottom-up testing, no stubs are required.
 A principal advantage of this integration testing is that

several disjoint subsystems can be tested simultaneously.

 It is easy to create the test conditions.
 Best for applications that uses bottom up design approach.

 It is Easy to observe the test results.
Disadvantages:

 Driver modules must be produced.
 In this testing, the complexity that occurs when the system is

made up of a large number of small subsystems.

 As Far modules have been created, there is no working

model can be represented.
4. Top-Down Integration Testing – Top-down integration testing

technique is used in order to simulate the behaviour of the lower-level
modules that are not yet integrated. In this integration testing, testing

takes place from top to bottom. First, high-level modules are tested

and then low-level modules and finally integrating the low-level
modules to a high level to ensure the system is working as intended.

Advantages:

 Separately debugged module.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356- OBJECT ORIENTED SOFTWARE ENGINEERING Page 5

 Few or no drivers needed.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356- OBJECT ORIENTED SOFTWARE ENGINEERING Page 6

 It is more stable and accurate at the aggregate level.
 Easier isolation of interface errors.

 In this, design defects can be found in the early stages.
Disadvantages:

 Needs many Stubs.

 Modules at lower level are tested inadequately.
 It is difficult to observe the test output.

 It is difficult to stub design.
5. Mixed Integration Testing – A mixed integration testing is also

called sandwiched integration testing. A mixed integration testing
follows a combination of top down and bottom-up testing approaches.

In top-down approach, testing can start only after the top-level module

have been coded and unit tested.

6. In bottom-up approach, testing can start only after the bottom
level modules are ready. This sandwich or mixed approach

overcomes this shortcoming of the top-down and bottom-up

approaches. It is also called the hybrid integration testing. also, stubs
and drivers are used in mixed integration testing. Advantages:

 Mixed approach is useful for very large projects having

several sub projects.
 This Sandwich approach overcomes this shortcoming of the

top-down and bottom-up approaches.

 Parallel test can be performed in top and bottom layer tests.

Disadvantages:

 For mixed integration testing, it requires very high cost

because one part has a Top-down approach while another
part has a bottom-up approach.

 This integration testing cannot be used for smaller systems

with huge interdependence between different modules.

Applications:
1. Identify the components: Identify the individual components

of your application that need to be integrated. This could
include the frontend, backend, database, and any third-party

services.

2. Create a test plan: Develop a test plan that outlines the
scenarios and test cases that need to be executed to validate

the integration points between the different components.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356- OBJECT ORIENTED SOFTWARE ENGINEERING Page 7

This could include testing data flow, communication

protocols, and error handling.

3. Set up test environment: Set up a test environment that
mirrors the production environment as closely as possible. This

will help ensure that the results of your integration tests are

accurate and reliable.
4. Execute the tests: Execute the tests outlined in your test plan,

starting with the most critical and complex scenarios. Be sure to

log any defects or issues that you encounter during testing.
5. Analyze the results: Analyze the results of your integration

tests to identify any defects or issues that need to be addressed.

This may involve working with developers to fix bugs or make
changes to the application architecture.

6. Repeat testing: Once defects have been fixed, repeat the

integration testing process to ensure that the changes have been
successful and that the application still works as expected.

System testing

A type of Software testing, System testing comes at the third level

after Unit testing and Integration testing. The goal of the system

testing is to compare the functional and non-functional features of

the system against the user requirements.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356- OBJECT ORIENTED SOFTWARE ENGINEERING Page 8

Stages of Software Testing

Once all the sub-systems or modules integrate to build one application,

testers perform System testing to check for potential functional and non-

functional irregularities. Overall, System testing checks for the system’s

design and behavior as per customer
Expectations. It is a black box testing technique.

Often, your QA team will rely on System Requirement Specifications

(SRS), Functional Requirement Specifications (FRS),
or a mix of both. We will discuss these two options later in this blog.

Types of System Testing

System testing covers the end-to-end analysis of a software

application in terms of its functionality and user experience. Hence, you

can categorize it into two parts—functional and non-functional.

Functional Testing

Functional testing validates the functional aspects of a software

system against the user requirements and functional specifications. It checks

for user experience or interface, API integration, database,

http://cracksoftwaretestinginterviews.blogspot.com/2014/01/19-difference-between-system-and.html
https://testsigma.com/blog/end-to-end-testing-frameworks/
https://testsigma.com/blog/advantages-of-api-testing/

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356- OBJECT ORIENTED SOFTWARE ENGINEERING Page 9

security and privacy, and server communication, as mentioned in the user

document.

One example of functional testing is checking for the login functionality

using the right credentials. The system should not allow you to sign in if

your username and password are wrong or not present in the database.

Non-Functional Testing

Non-functional testing checks for non-functional aspects of software, such

as performance, reliability, usability, and application readiness. It intends to

assess a system’s performance per the non-functional conditions that never

appear in the functional tests. Often, non- functional testing is important to

check for security, application load capability, and utility to measure user

satisfaction.

One example of non-functional testing is checking for the number of
users the system can handle at a time. It helps to determine the performance

and usability of the system under high traffic.

Advantages of System Testing

 End-to-end test that involves all the software components as a

whole and checks for defects

 Examine the software from a user point of view and simulate

real-life scenarios

 Covers both functional and non-functional testing elements such

as performance, usability, regression testing, and more

 No need for internal code knowledge

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356- OBJECT ORIENTED SOFTWARE ENGINEERING Page 10

Differences between System Testing and Integration Testing

System Testing

Integration Testing

Purpose

Testing the entire software

as a whole and

understanding if it meets

the user requirements

Testing several modules

together and understanding

how they interface with

each other

Executed

by

Test Engineers

QA Testers, Developers and

Test Engineers

Type of

testing

Both functional and non-

functional tests such as

performance, security,

regression testing, unit

testing, etc

Only functional tests. Can

be performed in different

approaches like top-down,

bottom-up, big-bang, and

more

Technique

Black-box testing

Grey-box testing

When to

perform

After Integration Testing

Before System Testing and

after Unit Testing

https://www.practitest.com/resource-center/article/functional-test-vs-integration-test

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356- OBJECT ORIENTED SOFTWARE ENGINEERING Page 11

Advantages

Involves all the software

components and checks for

bugs

Examine the software from a

user point of view and

simulate real- life scenarios

Covers both functional and

non- functional testing

elements

No need for internal code

knowledge

 Helps to figure out

how different

modules

communicate with

each other

 Finds defects in the

interface between

various components

 Can be performed by a wider

variety of staff members.

There are different

approaches with different

benefits to consider when

performing integration testing

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356- OBJECT ORIENTED SOFTWARE ENGINEERING Page 12

	Integration testing
	Advantages:
	Disadvantages:
	Disadvantages: (1)
	Disadvantages: (2)
	Disadvantages: (3)

	System testing
	Advantages of System Testing

