UNIT-II

DESIGN OF EXPERIMENTS

ANOVA - Analysis of Variance

2.1. Working Rule (One - Way Classification)

Set the null hypothesis H_{0} : There is no significance difference between the treatments.
Set the alternative hypothesis H_{1} : There is a significance difference between the treatments.

Step: 1 Find $\mathrm{N}=$ number of observations
Step: 2 Find $T=$ The total value of observations
Step: 3 Find the Correction Factor C.F $=\frac{T^{2}}{N}$
Step: 4 Calculate the total sum of squares and find the total sum of squares

$$
\mathrm{TSS}=\left(\sum X_{1}{ }^{2}+\sum X_{2}{ }^{2}+\sum X_{3}{ }^{2}+\ldots\right)-C . F
$$

Step: 5 Column sum of squares $\operatorname{SSC}\left(\frac{\left(\sum X_{1}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{2}\right)^{2}}{N_{2}}+\frac{\left(\sum X_{3}\right)^{2}}{N_{3}}+\ldots\right)-C . F$
Where $N_{i}=$ Total number of observation in each column ($i=1,2,3, \ldots$)
Step: 6 Prepare the ANOVA to calculate F - ratio

Source of variation	Sum of Degrees	Degrees of Freedom	Mean Square	F - Ratio
Between Samples	SSC	K - 1	MSC $=\frac{S S C}{K-1}$	$F_{c}=\frac{M S C}{M S E}$ if MSC $>$ MSE
Within Samples	SSE	N - K	MSE $=\frac{S S E}{N-K}$	$F_{c}=\frac{M S E}{M S C}$ if MSE $>$ MSC

Step: 7 Find the table value (use chi square table)
Step: 8 Conclusion:
Calculated value $<$ Table value, then we accept null hypothesis.
Calculated value $>$ Table value, then we reject null hypothesis.

PROBLEMS ON ONE WAY ANOVA

1.A completely randomised design experiment with 10 plots and 3 treatments gave the following results.

Plot No	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5	6	7	$\mathbf{8}$	$\mathbf{9}$	10
Treatment	A	B	C	A	C	C	A	B	A	B
Yield	5	4	3	7	5	1	3	4	1	7

Analyse the result for treatment effects.

Solution:

Set the null hypothesis H_{0} : There is no significance difference between the treatments.
Set the alternative hypothesis H_{1} : There is a significance difference between the treatments.

Treatments	Yields from plots				
A	5	7	3	1	
B	4	4	7	-	
C	3	5	1	-	

TABLE:

Treatment A Treatment B Treatment C

X_{1}	$X_{1}{ }^{2}$	X_{2}	$X_{2}{ }^{2}$	X_{3}	$X_{3}{ }^{2}$
5	25	4	16	3	9
7	49	4	16	5	25
3	9	7	49	7	7
1	1	-	-	-	-
$\sum X_{1}=16$	$\sum X_{1}{ }^{2}=84$	$\sum X_{2}=5$	$\sum X_{2}{ }^{2}=81$	$\sum X_{3}=9$	$\sum X_{3}{ }^{2}=35$

Step: $1 \mathrm{~N}=10$
Step: 2 Sum of all the items $(\mathrm{T})=\sum X_{1}+\sum X_{2}+\sum X_{3}=16+15+9=40$
Step: 3 Find the Correction Factor C. F $=\frac{T^{2}}{N}=\frac{(40)^{2}}{10}=160$

Step: 4 TSS = Total sum of squares

$$
=\text { sum of squares of all the items }- \text { C. F }
$$

$$
\begin{aligned}
\mathrm{TSS} & =\left(\sum X_{1}{ }^{2}+\sum X_{2}{ }^{2}+\sum X_{3}{ }^{2}+\ldots\right)-C . F \\
& =(84+81+35)-160=40
\end{aligned}
$$

Step: $5 \mathrm{SSC}=$ Sum of squares between samples

$$
\begin{aligned}
\mathrm{SSC} & =\left(\frac{\left(\sum X_{1}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{2}\right)^{2}}{N_{2}}+\frac{\left(\sum X_{3}\right)^{2}}{N_{3}}+\ldots\right)-C . F \\
\mathrm{SSC} & =\left(\frac{(16)^{2}}{4}+\frac{(15)^{2}}{3}+\frac{(9)^{2}}{3}+\ldots\right)-160 \\
& =64+75+27-160=6
\end{aligned}
$$

Step: 6 MSC $=$ Mean squares between samples

$$
\begin{aligned}
& =\frac{\text { Sum of squares between samples }}{d \cdot f} \\
& =\frac{6}{2}=3
\end{aligned}
$$

SSE $=$ Sum of squares within samples
$=$ Total sum of squares - Sum of squares between samples

$$
=40-6=34
$$

Step:7 MSE = Mean squares within samples

$$
\begin{aligned}
& =\frac{\text { Sum of squares within samples }}{d \cdot f} \\
& =\frac{34}{7}=4.86
\end{aligned}
$$

ANOVA TABLE

Source of variation	Sum of Degrees	Degrees of Freedom	Mean Square	F - Ratio
Between Samples	SSC $=6$	$\mathrm{~K}-1=3-1=2$	$\mathrm{MSC}=\frac{S S C}{K-1}=3$	
Within Samples	SSE $=34$	$\mathrm{~N}-\mathrm{K}=10-3=7$	$\mathrm{MSE}=\frac{S S E}{N-K}=$ 4.86	$F_{c}=\frac{M S E}{M S C}=1.62$

d.f for $(7,2)$ at 5% level of significance is 19.35

Step: 8 Conclusion:
Calculated value $<$ Table value, then we accept null hypothesis.
2. Three different machines are used for a production. On the basis of the outputs, set up one - way ANOVA table and test whether the machines are equally effective.

Outputs		
Machine I	Machine II	Machine III
10	9	20
15	7	16
11	5	10
10	6	14

Given that the value of \mathbf{F} at $\mathbf{5 \%}$ level of significance for $(2,9) \mathrm{d}$. f is $\mathbf{4 . 2 6}$

Solution:

Set the null hypothesis H_{0} : The machines are equally effective.

TABLE:

Treatment A		Treatment B		Treatment C	
X_{1}	$X_{1}{ }^{2}$	X_{2}		$X_{2}{ }^{2}$	X_{3}
10	100	9	81	20	400
15	225	7	49	16	256
11	121	5	25	10	100
20	400	6	36	14	196
$\sum X_{1}=56$	$\sum X_{1}{ }^{2}=846$	$\sum X_{2}=27$	$\sum X_{2}{ }^{2}=191$	$\sum X_{3}=60$	$\sum X_{3}{ }^{2}=952$

Step: $1 \mathrm{~N}=12$
Step: 2 Sum of all the items $(\mathrm{T})=\sum X_{1}+\sum X_{2}+\sum X_{3}=56+27+60=143$
Step: 3 Find the Correction Factor C.F $=\frac{T^{2}}{N}=\frac{(143)^{2}}{12}=1704.08$
Step: 4 TSS $=$ Total sum of squares

$$
=\text { sum of squares of all the items }-\mathrm{C} . \mathrm{F}
$$

$$
\begin{aligned}
\mathrm{TSS} & =\left(\sum X_{1}^{2}+\sum X_{2}^{2}+\sum X_{3}^{2}+\ldots\right)-C . F \\
& =(846+191+952)-1704.08=284.92
\end{aligned}
$$

Step: 5 SSC $=$ Sum of squares between samples

$$
\begin{aligned}
\mathrm{SSC} & =\left(\frac{\left(\sum X_{1}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{2}\right)^{2}}{N_{2}}+\frac{\left(\sum X_{3}\right)^{2}}{N_{3}}+\ldots\right)-C . F \\
\mathrm{SSC} & =\left(\frac{(56)^{2}}{4}+\frac{(27)^{2}}{4}+\frac{(60)^{2}}{4}+\ldots\right)-1704.08 \\
& =784+182.25+900-1704.08=162.17
\end{aligned}
$$

Step: 6 MSC $=$ Mean squares between samples

$$
\begin{aligned}
& =\frac{\text { Sum of squares between samples }}{d . f} \\
& =\frac{162.17}{2}=81.085
\end{aligned}
$$

SSE = Sum of squares within samples
$=$ Total sum of squares - Sum of squares between samples

$$
=284.92-162.17=122.75
$$

Step: 7 MSE = Mean squares within samples

$$
\begin{aligned}
& =\frac{\text { Sum of squares within samples }}{d . f} \\
& =\frac{122.75}{9}=13.63
\end{aligned}
$$

ANOVA TABLE

Source of variation	Sum of Degrees	Degrees of Freedom	Mean Square	F - Ratio
Between Samples	SSC $=$ 162.17	$\mathrm{~K}-1=3-1=2$	$\mathrm{MSC}=\frac{S S C}{K-1}=$	
81.085				

d.f for $(2,9)$ at 5% level of significance is 4.26 .

Step: 8 Conclusion:
Calculated value $>$ Table value, then we reject the null hypothesis.
i.e., the three machines are not equally effective.

