
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3401ALGORITHMS

HUFFMANTREES
To encode a text that comprises symbols from some n-symbol alphabet by

assigning to each of the text’s symbols some sequence of bits called the codeword. For
example, we can use a fixed- length encoding that assigns to each symbol a bit string of
the same length m (m ≥ log2 n). This is exactly what the standard ASCII code does.

Variable-length encoding, which assigns codewords of different lengths to
different symbols, introduces a problem that fixed-length encoding does not have. Namely,
how can we tell how many bits of an encoded text represent the first (or, more generally,
the ith) symbol? To avoid this complication, we can limit urselvesto the so-called prefix-
free (or simply prefix) codes.

In a prefix code, no codeword is a prefix of a codeword of another symbol. Hence,
with such an encoding, we can simply scan a bit string until we get the first group of bits
that is a codeword for some symbol, replace these bits by this symbol, and repeat this
operation until the bit string’s end isreached.

Huffman’s algorithm
Step 1 Initialize n one-node trees and label them with the symbols of the alphabet

given. Record the frequency of each symbol in its tree’s root to indicate the
tree’s weight. (More generally, the weight of a tree will be equal to the sum
of the frequencies in the tree’s leaves.)

Step 2 Repeat the following operation until a single tree is obtained. Find two trees
with the smallest weight (ties can be broken arbitrarily, but see Problem 2
in this section’s exercises). Make them the left and right subtree of a new
tree and record the sum of their weights in the root of the new tree as
itsweight.

A tree constructed by the above algorithm is called a Huffman tree. It defines in
the manner described above is called a Huffman code.

EXAMPLE Consider the five-symbol alphabet {A, B, C, D, _} with the following
occurrence frequencies in a text made up of these symbols:

symbol A B C D _
frequency 0.35 0.1 0.2 0.2 0.15

The Huffman tree construction for this input is shown in Figure 3.18

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3401ALGORITHMS

FIGURE 3.18 Example of constructing a Huffman coding tree.

The resulting codewords are as follows:

symbol A B C D _

frequency 0.35 0.1 0.2 0.2 0.15

codeword 11 100 00 01 101

Hence, DAD is encoded as 011101, and 10011011011101 is decoded as BAD_AD.
With the occurrence frequencies given and the codeword lengths obtained, the average
number of bits per symbol in this code is 2 .0.35 + 3 .0.1+ 2 .0.2 + 2 .0.2 + 3 .0.15 =2.25.

We used a fixed-length encoding for the same alphabet, we would have to use at
least 3 bits per each symbol. Thus, for this toy example, Huffman’s code achieves the
compression ratio - a standard measure of a compression algorithm’s effectiveness of (3−
2.25) / 3 ∙ 100% = 25%. In other words, Huffman’s encoding of the text will use 25% less
memory than its fixed-length encoding.

Running time is O(n log n), as each priority queue operation takes time O(log n).

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3401ALGORITHMS

Applications of Huffman’s encoding
1. Huffman’s encoding is a variable length encoding, so that number of bits used

are lesser than fixed length encoding.
2. Huffman’s encoding is very useful for file compression.
3. Huffman’s code is used in transmission of data in an encoded format.
4. Huffman’s encoding is used in decision trees and gameplaying.

