Discrete Fourier Transform (DFT):

The discrete Fourier transform of a finite-length sequence $x(n)$ is defined as

$$
X(k)=\sum_{k=0}^{N-1} x(n) e^{-j 2 \pi k n / N} \quad 0 \leq k \leq N-1
$$

$\mathrm{X}(\mathrm{k})$ is periodic with period N i.e., $\mathrm{X}(\mathrm{k}+\mathrm{N})=\mathrm{X}(\mathrm{k})$.

Inverse Discrete Fourier Transform (IDFT):

The inverse discrete Fourier transform of $\mathrm{X}(\mathrm{k})$ is defined as

$$
x(n)=\frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j 2 \pi k n / N} \quad 0 \leq n \leq N-1
$$

For notation purpose discrete Fourier transform and inverse Fourier transform can be represented by

$$
\begin{aligned}
X(k) & =\operatorname{DFT}[x(n)] \\
x(n) & =I D F T[X(k)]
\end{aligned}
$$

Formula:

$$
\begin{aligned}
& X(k)=\sum_{n=0}^{N-1} x(n) e^{-j 2 \pi \frac{k n}{N}} \\
& x(n)=\frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j 2 \pi \frac{k n}{N}}
\end{aligned}
$$

Where K and n are in the range of $0,1,2 \ldots \ldots \mathrm{~N}-1$
For example, if $\mathrm{N}=4$

$$
\mathrm{K}=0,1,2,3
$$

$$
\mathrm{N}=0,1,2,3
$$

Alternative Formula:

$$
\begin{aligned}
X(k) & =\sum_{n=0}^{N-1} x(n) W^{k n} \longleftarrow W=e^{-j \frac{2 \pi}{N}} \\
x(n) & =\frac{1}{N} \sum_{k=0}^{N-1} X(k) W^{-k n}
\end{aligned}
$$

3.1 Properties of DFT:

Periodicity property:

If $\mathrm{X}(\mathrm{k})$ is the N -point DFT of $\mathrm{x}(\mathrm{n})$, then

$$
\mathrm{X}(\mathrm{k}+\mathrm{N})=\mathrm{X}(\mathrm{k})
$$

Linearity property:

$$
\begin{aligned}
& \text { If } \mathrm{X}_{1}(\mathrm{k})=\operatorname{DFT}\left[\mathrm{x}_{1}(\mathrm{n})\right] \& \mathrm{X}_{2}(\mathrm{k})=\operatorname{DFT}\left[\mathrm{x}_{2}(\mathrm{n})\right] \text {, then } \\
& \quad \operatorname{DFT}\left[\mathrm{a}_{1} \mathrm{x}_{1}(\mathrm{n})+\mathrm{a}_{2} \mathrm{x}_{2}(\mathrm{n})\right]=\mathrm{a}_{1} \mathrm{X}_{1}(\mathrm{k})+\mathrm{a}_{2} \mathrm{X}_{2}(\mathrm{k})
\end{aligned}
$$

Convolution property:

If $\mathrm{X}_{1}(\mathrm{k})=\operatorname{DFT}\left[\mathrm{x}_{1}(\mathrm{n})\right] \& \mathrm{X}_{2}(\mathrm{k})=\operatorname{DFT}\left[\mathrm{x}_{2}(\mathrm{n})\right]$, then

$$
\operatorname{DFT}\left[\mathrm{x}_{1}(\mathrm{n}) \overparen{\mathrm{N}} \mathrm{x}_{2}(\mathrm{n})\right]=\mathrm{X}_{1}(\mathrm{k}) \mathrm{X}_{2}(\mathrm{k})
$$

Where (N indicates N-point circular convolution.

Multiplication property:

If $\mathrm{X}_{1}(\mathrm{k})=\operatorname{DFT}\left[\mathrm{x}_{1}(\mathrm{n})\right] \& \mathrm{X}_{2}(\mathrm{k})=\operatorname{DFT}\left[\mathrm{x}_{2}(\mathrm{n})\right]$, then

$$
\operatorname{DFT}\left[\mathrm{x}_{1}(\mathrm{n}) \mathrm{x}_{2}(\mathrm{n})\right]=(1 / \mathrm{N})\left[\mathrm{X}_{1}(\mathrm{k}) \overparen{\mathrm{N}} \mathrm{X}_{2}(\mathrm{k})\right]
$$

Where (N) Indicates N -point circular convolution.

Time reversal propertv:

If $\mathrm{X}(\mathrm{k})$ is the N -point DFT of $\mathrm{x}(\mathrm{n})$, then

$$
\operatorname{DFT}[\mathrm{x}(\mathrm{~N}-\mathrm{n})]=\mathrm{X}(\mathrm{~N}-\mathrm{k})
$$

Time shift property:

If $\mathrm{X}(\mathrm{k})$ is the N -point DFT of $\mathrm{x}(\mathrm{n})$, then

$$
\operatorname{DFT}[\mathrm{x}(\mathrm{n}-\mathrm{m})]=\mathrm{e}^{-\mathrm{j} 2 \pi \mathrm{mk} / \mathrm{N}} \mathrm{X}(\mathrm{k})
$$

Symmetry properties:

If $x(n)=x_{R}(n)+j x_{I}(n)$ is N-point complex sequence and $X(k)=X_{R}(k)+j X_{I}(k)$ is the $N-$ point DFT of $x(n)$ where $x_{R}(n) \& x_{I}(n)$ are the real \& imaginary parts of $x(n)$ and $X_{R}(k) \&$ $\mathrm{X}_{\mathrm{I}}(\mathrm{k})$ are the those of $\mathrm{X}(\mathrm{k})$, then
(i) $\quad \operatorname{DFT}\left[x_{*}^{*}(\mathrm{n})\right]=\mathrm{X}^{*}(\mathrm{~N}-\mathrm{k})$
(ii) $\operatorname{DFT}\left[\mathrm{x}^{*}(\mathrm{~N}-\mathrm{n})\right]=\mathrm{X}^{*}(\mathrm{k})$
(iii) $\quad \operatorname{DFT}\left[x_{R}(\mathrm{n})\right]=(1 / 2)\left[\mathrm{X}(\mathrm{k})+\mathrm{X}_{*}^{*}(\mathrm{~N}-\mathrm{k})\right]$
(iv) $\quad \operatorname{DFT}\left[\mathrm{x}_{\mathrm{I}}(\mathrm{n})\right]=(1 / 2 \mathrm{j})\left[\mathrm{X}(\mathrm{k})-\mathrm{X}^{*}(\mathrm{~N}-\mathrm{k})\right]$
(v) $\quad \operatorname{DFT}\left[x_{c e}(n)\right]=X_{R}(k)$ where $x_{c e}(n)=(1 / 2)\left[x(n)+x^{*}(N-n)\right]$
(vi) $\quad \operatorname{DFT}\left[\mathrm{x}_{\mathrm{co}}(\mathrm{n})\right]=\mathrm{j} \mathrm{X}_{\mathrm{I}}(\mathrm{k})$ where $\mathrm{x}_{\mathrm{co}}(\mathrm{n})=(1 / 2)\left[\mathrm{x}(\mathrm{n})-\mathrm{x}^{*}(\mathrm{~N}-\mathrm{n})\right]$

If $x(n)$ is real, then
(i) If $x(n)$ is real, then
a. $\quad \mathrm{X}(\mathrm{k})=\mathrm{X}^{*}(\mathrm{~N}-\mathrm{k})$
b. $\quad X_{R}(k)=X_{R}(N-k)$
(ii) If $x(n)$ is real, then
a) $\mathrm{X}(\mathrm{k})=\mathrm{X}^{*}(\mathrm{~N}-\mathrm{k})$
b) $X_{R}(k)=X_{R}(N-k)$
c) $\mathrm{X}_{\mathrm{I}}(\mathrm{k})=-\mathrm{X}_{\mathrm{I}}(\mathrm{N}-\mathrm{k})$
d) $|X(k)|=|X(N-k)|$
e) $|X(k)|=|X(N-k)|$
f) $\angle \mathrm{X}(\mathrm{k})=-\angle \mathrm{X}(\mathrm{N}-\mathrm{k})$
(i) $\quad \operatorname{DFT}\left[\mathrm{x}_{\mathrm{ce}}(\mathrm{n})\right]=\mathrm{X}_{\mathrm{R}}(\mathrm{k})$ where $\mathrm{x}_{\text {ce }}(\mathrm{n})=(1 / 2)[\mathrm{x}(\mathrm{n})+\mathrm{x}(\mathrm{N}-\mathrm{n})]$
(ii) $\quad \mathrm{DFT}\left[\mathrm{x}_{\mathrm{co}}(\mathrm{n})\right]=\mathrm{j} \mathrm{X}_{\mathrm{I}}(\mathrm{k})$ where $\mathrm{x}_{\mathrm{co}}(\mathrm{n})=(1 / 2)[\mathrm{x}(\mathrm{n})-\mathrm{x}(\mathrm{N}-\mathrm{n})]$

Problem 1:

Find the DFT of a sequence $x(n)=\{1,1,0,0\}$ and find the IDFT of $Y(K)=\{1,0,1,0\}$
Let us assume $N \underset{N-1}{L}=4$.
We have $X(k)=\sum_{n=0} x(n) e^{-j 2 \pi n k / N} \quad k=0,1, \ldots, N-1$

$$
\begin{aligned}
X(0)=\sum_{n=0}^{3} x(n) & =x(0)+x(1)+x(2)+x(3) \\
& =1+1+0+0=2
\end{aligned}
$$

$$
\begin{aligned}
& X(1)=\sum_{n=0}^{3} x(n) e^{-j \pi n / 2}=x(0)+x(1) e^{-j \pi / 2}+x(2) e^{-j \pi}+x(3) e^{-j 3 \pi / 2} \\
& =1+\cos \frac{\pi}{2}-j \sin \frac{\pi}{2} \\
& =1-j \\
& X(2)=\sum_{n=0}^{3} x(n) e^{-j \pi n}=x(0)+x(1) e^{-j \pi}+x(2) e^{-j 2 \pi}+x(3) e^{-j 3 \pi} \\
& =1+\cos \pi-j \sin \pi \\
& =1-1=0 \\
& X(3)=\sum_{n=0}^{3} x(n) e^{-j 3 n \pi / 2}=x(0)+x(1) e^{-j 3 \pi / 2}+x(2) e^{-j 3 \pi}+x(3) e^{-j 9 \pi / 2} \\
& =1+\cos \frac{3 \pi}{2}-j \sin \frac{3 \pi}{2} \\
& =1+j \\
& X(k)=\{2,1-j, 0,1+j\} \\
& y(n)=\frac{1}{N} \sum_{k=0}^{N-1} Y(k) e^{j 2 \pi n k / N} \quad n=0,1, \ldots N-1 \\
& y(0)=\frac{1}{4} \sum_{k=0}^{3} Y(k) \quad n=0,1,2,3 \\
& =\frac{1}{4}[y(0)+y(1)+y(2)+y(3)] \\
& =\frac{1}{4}[1+0+1+0] \\
& =0.5
\end{aligned}
$$

$$
\begin{aligned}
y(1) & =\frac{1}{N} \sum_{k=0}^{3} Y(k) e^{j \pi k / 2} \\
y(1) & =\frac{1}{4}\left[Y(0)+Y(1) e^{j \pi / 2}+Y(2) e^{j \pi}+Y(3) e^{j 3 \pi / 2}\right] \\
& =\frac{1}{4}[1+0+\cos \pi+j \sin \pi+0] \\
& =\frac{1}{4}[1+0-1+0]=0 \\
y(2) & =\frac{1}{4}\left[Y(0)+Y(1) e^{j \pi}+Y(2) e^{j 2 \pi}+Y(3) e^{j 3 \pi}\right] \\
& =\frac{1}{4}[1+0+\cos 2 \pi+j \sin 2 \pi+0] \\
& =\frac{1}{4}[1+0+1+0]=0.5 \\
y(3)= & \frac{1}{4}\left[Y(0)+Y(1) e^{j 3 \pi / 2}+Y(2) e^{j 3 \pi}+Y(3) e^{j 9 \pi / 2}\right] \\
& =\frac{1}{4}[1+0+\cos 3 \pi+j \sin 3 \pi+0] \\
& =\frac{1}{4}[1+0+(-1)+0]=0 \\
y(n) & =\{0.5,0,0.5,0\}
\end{aligned}
$$

