Discrete Fourier Transform (DFT):

The discrete Fourier transform of a finite-length sequence x(n) is defined as

$$X(k) = \sum_{k=0}^{N-1} x(n) e^{-j2\pi k n/N} \quad 0 \le k \le N-1$$

X(k) is periodic with period N i.e., X(k+N) = X(k).

Inverse Discrete Fourier Transform (IDFT):

The inverse discrete Fourier transform of X(k) is defined as

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j2\pi k n/N} \quad 0 \le n \le N-1$$

For notation purpose discrete Fourier transform and inverse Fourier transform can be represented by

$$\begin{aligned} X(k) &= DFT\left[x(n)\right] \\ x(n) &= IDFT\left[X(k)\right] \end{aligned}$$

Formula:

$$X(k) = \sum_{n=0}^{N-1} x(n) e^{-j2\pi \frac{kn}{N}}$$
$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j2\pi \frac{kn}{N}}$$

Where K and n are in the range of 0,1,2.....N-1

For example, if N=4

K=0,1,2,3 N=0,1,2,3

Alternative Formula:

$$\begin{aligned} X(k) &= \sum_{n=0}^{N-1} x(n) W^{kn} &\longleftarrow W = e^{-j\frac{2\pi}{N}} \\ x(n) &= \frac{1}{N} \sum_{k=0}^{N-1} X(k) W^{-kn}. \end{aligned}$$

3.1 Properties of DFT:

Periodicity property:

If X(k) is the N-point DFT of x(n), then

$$X(k+N)=X(k)$$

Linearity property:

If
$$X_1(k)=DFT[x_1(n)] \& X_2(k)=DFT[x_2(n)]$$
, then
DFT[$a_1x_1(n)+a_2x_2(n)]=a_1X_1(k)+a_2X_2(k)$

Convolution property:

If $X_1(k) = DFT[x_1(n)] \& X_2(k) = DFT[x_2(n)]$, then

 $DFT[x_1(n) \bigcirc x_2(n)] = X_1(k)X_2(k)$

Where (N) indicates N-point circular convolution.

Multiplication property:

If
$$X_1(k) = DFT[x_1(n)] \& X_2(k) = DFT[x_2(n)]$$
, then

 $DFT[x_1(n)x_2(n)] = (1/N)[X_1(k)N] X_2(k)]$

Where (N) Indicates N-point circular convolution.

<u>Time reversal property:</u>

If X(k) is the N-point DFT of x(n), then

DFT[x(N-n)] = X(N-k)

If X(k) is the N-point DFT of x(n), then

$$DFT[x(n-m)] = e^{-j2\pi mk/N}X(k)$$

Symmetry properties:

If $x(n)=x_R(n)+jx_I(n)$ is N-point complex sequence and $X(k)=X_R(k)+jX_I(k)$ is the Npoint DFT of x(n) where $x_R(n) \& x_I(n)$ are the real & imaginary parts of x(n) and $X_R(k) \&$ $X_{I}(k)$ are the those of X(k), then

- $DFT[x_{*}^{*}(n)]=X^{*}(N-k)$ $DFT[x_{*}^{*}(N-n)]=X^{*}(k)$ (i)
- (ii)
- $DFT[x_R(n)] = (1/2)[X(k) + X_*^*(N-k)]$ (iii)
- $DFT[x_I(n)] = (1/2i)[X(k) X(N-k)]$ (iv)
- DFT[$x_{ce}(n)$]=X_R(k) where $x_{ce}(n)$ =(1/2)[x(n)+ $x^{*}(N-n)$] DFT[$x_{co}(n)$]=jX_I(k) where $x_{co}(n)$ =(1/2)[x(n)- $x^{*}(N-n)$] (v)
- (vi)

If x(n) is real, then

- (i) If x(n) is real, then
 - a. $X(k)=X^{*}(N-k)$
 - b. $X_R(k)=X_R(N-k)$

(ii) If
$$x(n)$$
 is real, then

a)
$$X(k)=X (N-k)$$

b) $X_R(k)=X_R(N-k)$
c) $X_I(k)=-X_I(N-k)$
d) $|X(k)|=|X(N-k)|$
e) $|X(k)|=|X(N-k)|$
f) $\angle X(k)=-\angle X(N-k)$
DFT[$x_{ce}(n)$]= $X_R(k)$ where $x_{ce}(n)=(1/2)[x(n)+x(N-n)]$

*

(ii) DFT[$x_{co}(n)$]=j $X_I(k)$ where $x_{co}(n)=(1/2)[x(n)-x(N-n)]$

Problem 1:

(i)

Find the DFT of a sequence $x(n) = \{1,1,0,0\}$ and find the IDFT of $Y(K) = \{1,0,1,0\}$

Let us assume
$$N = L = 4$$
.
We have $X(k) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi nk/N}$ $k = 0, 1, ..., N-1$
 $X(0) = \sum_{n=0}^{3} x(n) = x(0) + x(1) + x(2) + x(3)$
 $= 1 + 1 + 0 + 0 = 2$

$$\begin{aligned} X(1) &= \sum_{n=0}^{3} x(n) e^{-j\pi n/2} = x(0) + x(1) e^{-j\pi/2} + x(2) e^{-j\pi} + x(3) e^{-j3\pi/2} \\ &= 1 + \cos \frac{\pi}{2} - j \sin \frac{\pi}{2} \\ &= 1 - j \end{aligned}$$

$$\begin{aligned} X(2) &= \sum_{n=0}^{3} x(n) e^{-j\pi n} = x(0) + x(1) e^{-j\pi} + x(2) e^{-j2\pi} + x(3) e^{-j3\pi} \\ &= 1 + \cos \pi - j \sin \pi \\ &= 1 - 1 = 0 \end{aligned}$$

$$\begin{aligned} X(3) &= \sum_{n=0}^{3} x(n) e^{-j3\pi\pi/2} = x(0) + x(1) e^{-j3\pi/2} + x(2) e^{-j3\pi} + x(3) e^{-j9\pi/2} \\ &= 1 + \cos \frac{3\pi}{2} - j \sin \frac{3\pi}{2} \\ &= 1 + j \end{aligned}$$

$$\begin{aligned} Y(k) &= \{2, 1 - j, 0, 1 + j\} \\ y(n) &= \frac{1}{N} \sum_{k=0}^{N-1} Y(k) e^{j2\pi nk/N} \quad n = 0, 1, \dots N - 1 \\ y(0) &= \frac{1}{4} \sum_{k=0}^{3} Y(k) \quad n = 0, 1, 2, 3 \end{aligned}$$

$$\begin{aligned} &= \frac{1}{4} [y(0) + y(1) + y(2) + y(3)] \\ &= \frac{1}{4} [1 + 0 + 1 + 0] \\ &= 0.5 \end{aligned}$$

$$y(1) = \frac{1}{N} \sum_{k=0}^{3} Y(k) e^{j\pi k/2}$$

$$y(1) = \frac{1}{4} \left[Y(0) + Y(1) e^{j\pi/2} + Y(2) e^{j\pi} + Y(3) e^{j3\pi/2} \right]$$

$$= \frac{1}{4} [1 + 0 + \cos \pi + j \sin \pi + 0]$$

$$= \frac{1}{4} [1 + 0 - 1 + 0] = 0$$

$$y(2) = \frac{1}{4} \left[Y(0) + Y(1) e^{j\pi} + Y(2) e^{j2\pi} + Y(3) e^{j3\pi} \right]$$

$$= \frac{1}{4} [1 + 0 + \cos 2\pi + j \sin 2\pi + 0]$$

$$= \frac{1}{4} [1 + 0 + 1 + 0] = 0.5$$

$$y(3) = \frac{1}{4} \left[Y(0) + Y(1) e^{j3\pi/2} + Y(2) e^{j3\pi} + Y(3) e^{j9\pi/2} \right]$$

$$= \frac{1}{4} [1 + 0 + \cos 3\pi + j \sin 3\pi + 0]$$

$$= \frac{1}{4} [1 + 0 + (-1) + 0] = 0$$

$$y(n) = \{0.5, 0, 0.5, 0\}$$