UNIT - III

APPLICATIONS OF PARTIAL DIFFERENTIALEQUATIONS

 Solution of the heat equationThe heat equation is

Let $u=X(x) . T(t)$ be the solution of (1), where „X" is a function of ,,${ }^{\prime \prime}$ " alone and „ T " is afunction of „t" alone.

Substituting these in (1), we get

$$
X T^{\prime}=\alpha^{2} X^{\prime \prime} T .
$$

$$
x^{\prime \prime}
$$

\qquad
T'

(2).

Now the left side of (2) is a function of ,,x" alone and the right side is a function of „t"alone. Since "x" and „t" are independent variables, (2) can be true only if each side is equal to a constant.

Therefore,

Hence, we get $X^{\prime \prime}-k X=0$ and $T^{\prime}-\alpha^{2} k T=0$
(3).

[^0](i) when , $\mathrm{k}^{\prime \prime}$ is positive and $\mathrm{k}=\lambda^{2}$, say
\[

$$
\begin{aligned}
& \mathrm{X}=\mathrm{c}_{1} \mathrm{e}^{\lambda \mathrm{x}}+\mathrm{c}_{2} \mathrm{e}^{-\lambda x_{2}} \\
& \mathrm{~T}=\mathrm{c}_{3} \mathrm{e}^{\alpha \lambda_{\mathrm{t}}^{2}}
\end{aligned}
$$
\]

(ii) when „ $\mathrm{k}^{\prime \prime}$ is negative and $\mathrm{k}=-\lambda^{2}$, say

$$
\begin{aligned}
& X=c_{4} \cos \lambda x+c_{5} \sin \lambda x \\
& T=c_{6} e^{-\alpha \lambda_{t}^{2}}
\end{aligned}
$$

(iii) when " k " is zero.

$$
\begin{aligned}
& X=c_{7} X+c_{8} T \\
& =c_{9}
\end{aligned}
$$

Thus the various possible solutions of the heat equation (1) are

Of these three solutions, we have to choose that solution which suits the physical nature of the problem and the given boundary conditions. As we are dealing with problems on heat flow, $u(x, t)$ must be a transient solution such that , u " is to decrease withthe increase of time „t".

Therefore, the solution given by (5),

$$
\mathrm{u}=\left(\mathrm{c}_{4} \cos \lambda \mathrm{x}+\mathrm{c}_{5} \sin \lambda \mathrm{x}\right) \mathrm{c}_{6} \mathrm{e}^{-\alpha \lambda \mathrm{t}}
$$

is the only suitable solution of the heat equation.

Illustrative Examples

Example 7

A rod „$\ell^{\prime \prime} \mathrm{cm}$ with insulated lateral surface is initially at temperature $f(x)$ at an inner point of distance $x \mathrm{~cm}$ from one end. If both the ends are kept at zero temperature,find the temperature at any point of the rod at any subsequent time.

$$
\frac{\partial u}{\partial t}=\alpha^{2}
$$

The boundary conditions are
(i) $\quad u(0, t)=0, \quad \forall t \geq 0$
(ii) $u(e, t)=0, \quad \forall t \geq 0$
(iii) $u(x, 0)=f(x), 0<x<e$

Applying condition (i) in (2), we have

$$
\begin{align*}
& 0=A \cdot e^{-\alpha^{2} \lambda}{ }^{t} \text { which gives } A=0 \\
& \therefore u(x, t)=B \sin \lambda \mathrm{e}^{-\alpha 2 \lambda 2} \tag{3}
\end{align*}
$$

Applying condition (ii) in the above equation, we get $0=B \sin \lambda l e^{-\alpha \lambda t}$
i.e, $\lambda e=n \pi$ or $\lambda=------------(n$ is an integer)

$$
\ell
$$

$-n^{2} \pi^{2} \alpha^{2}$

The LHS series is the half range Fourier sine series of the RHS function.

Substituting in (4), we get the temperature function

Example 8

$$
\text { The equation for the conduction of heat along a bar of length } e \text { is ------- = } \alpha^{2}------
$$ --,

$$
\partial t \quad \partial x^{2}
$$

neglecting radiation. Find an expression for u, if the ends of the bar are maintained atzero temperature and if, initially, the temperature is T at the centre of the bar and fallsuniformly to
zero at its ends.

Let u be the temperature at P, at a distance x from the end A at time t.
$\begin{array}{ll}\partial u & \partial^{2} u\end{array}$
The temperature function $u(x, t)$ is given by the equation ------ = α^{2}

The boundary conditions are

$$
\text { (i) } \quad u(0, t)=0, \forall t \geq 0 \text {. }
$$

(ii) $\quad u(e, t)=0, \forall t \geq 0$.

The solution of (1) is of the form

$$
u(x, t)=(A \cos \lambda x+B \sin \lambda x) e^{-\alpha \lambda}
$$

Applying conditions (i) and (ii) in (2), we get

$$
\begin{aligned}
& \text { n } \\
& A=0 \& \lambda=----- \\
& \text { e }
\end{aligned}
$$

Thus the most general solution is

$$
\begin{aligned}
& -n^{2} \pi^{2} \alpha^{2}
\end{aligned}
$$

Using condition (iii) in (3), we have

$$
u(x, 0)=\sum_{n=1}^{\infty} B_{n} \sin -\frac{n \pi x}{0}
$$

We now expand $u(x, 0)$ given by (iii) in a half - range sine series in $(0, \ell)$

Example 9

A rod of length , $\ell^{\prime \prime}$ has its ends A and B kept at $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ until steady state conditions prevails. If the temperature at B is reduced suddenly to $0^{\circ} \mathrm{C}$ and kept so while that of A is maintained, find the temperature $u(x, t)$ at a distance x from A and at time , $t^{\prime \prime}$.

The heat-equation is given by

Prior to the temperature change at the end B , when $\mathrm{t}=0$, the heat flow was independent of time (steady state condition).

When the temperature u depends only on x, equation(1) reduces to
$\ldots \partial^{\partial^{2} u}=0$

Its general solution is $u=a x+b-$

Since $u=0$ for $x=0 \& u=100$ for $x=\ell$, therefore (2) gives $b=0 \& a=-------$

Using, conditions (i) and (ii) in (3), we get

Applying (iii) in (4), we get

$$
\begin{aligned}
& u(x, 0)=\sum_{n=1}^{\infty} B_{n} \sin \cdots-\cdots \pi x
\end{aligned}
$$

$$
\begin{aligned}
& ==>B_{n} \quad=---\int_{0}^{\ell} \frac{100 x}{}-----\sin ----------d x
\end{aligned}
$$

$B_{n}=$

$u(x, t)=\begin{array}{ccc}\infty & 200(-1)^{n+1} & n \pi x \\ \sum_{n=1}^{\infty}-\cdots-\cdots-\cdots-\cdots & \sin \cdots & e^{\frac{-n^{2} \pi^{2} \alpha^{2} t}{l^{2}}}\end{array}$

Example 10

A rod, $30 \mathrm{c} . \mathrm{m}$ long, has its ends A and B kept at $20^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ respectively, untilsteady state conditions prevail. The temperature at each end is then suddenly reduced to $0^{\circ} \mathrm{C}$ and kept so. Find the resulting temperature function $u(x, t)$ taking $x=0$ at A.

The one dimensional heat flow equation is given by
∂u
$\partial^{2} u$
$=\alpha^{2}$
(1)

The initial conditions, in steady - state, are

$$
\begin{array}{ll}
u=20, \text { when } & x=0 u \\
=80, \text { when } & x=30
\end{array}
$$

Therefore, (3) gives $b=20, a=2$.

$$
\begin{equation*}
\therefore u(x)=2 x+20- \tag{4}
\end{equation*}
$$

Hence the boundary conditions are (i)
(ii) $\quad u(0, t)=0, \quad \forall t \geq 0$
(iii) $u(x, 0)=2 x+20$, for $0<x<30$

The solution of equation (1) is given by

$$
u(x, t)=(A \cos \lambda x+B \sin \lambda x) e^{-\alpha \lambda t^{---2^{2}}}
$$

Applying conditions (i) and (ii), we get

$$
\begin{aligned}
& A=0, \lambda=-------, \text { where „} n \text { " is an integer } 30 \\
& -\alpha^{2} n^{2} \pi^{2} \\
& \therefore u(x, t)=B \sin --\quad \text { e } \quad n \pi x------- \\
& \text {------- } \\
& \text { (6) }
\end{aligned}
$$

The most general solution is

$$
\begin{align*}
& n \pi x------------\alpha^{2} n^{2} \pi^{2} \\
& \therefore u(x, t)=\sum B_{n} \sin \tag{7}\\
& \mathrm{n}=1 \\
& \text { e---------900 }
\end{align*}
$$

Applying (iii) in (7), we get

$$
u(x, 0)=\sum_{n=1} B_{n} \sin -\cdots-\cdots-\cdots=2 x+20,0<x<30 \text {. }
$$

$$
B_{n}=---------\left\{1-4(-1)^{n}\right\}
$$

Hence, the required solution is

$$
\begin{aligned}
& \infty 40 \\
& u(x, t)=\sum-----\left\{1-4(-1)^{n}\right\} \sin ---e \\
& n=1 \quad n \pi \\
& \text { t } \\
& \text {---- } 900 \\
& 30
\end{aligned}
$$

Steady-state conditions and non-zero boundary conditions

Example 11

The ends A and B of a rod 30 cm . long have their temperatures kept at $20^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$, until steady-state conditions prevail. The temperature of the end B is suddenly reduced to $60^{\circ} \mathrm{C}$ and kept so while the end A is raised to $40^{\circ} \mathrm{C}$. Find the temperature distribution in the rod after time t.

Let the equation for the heat- flow be

In steady-state, equation (1) reduces to $-\cdots-----\quad=0$.
Solving, we get

The initial conditions, in steady-state, areu =

20, when $x=0$
$u=80$,

$$
\text { when } x=30
$$

From (2), b=20 \& a $=2$.

Thus the temperature function in steady-state is

$$
\begin{equation*}
u(x)=2 x+20- \tag{3}
\end{equation*}
$$

Hence the boundary conditions in the transient-state are(i)

$$
\mathrm{u}(0, \mathrm{t})=40, \quad \forall \mathrm{t}>0
$$

(ii) $u(30, t)=60, \quad \forall t>0$
(iii) $u(x, 0)=2 x+20$, for $0<x<30$
we break up the required funciton $u(x, t)$ into two parts and write

$$
\begin{equation*}
u(x, t)=u_{s}(x)+u_{t}(x, t) \tag{4}
\end{equation*}
$$

where $u_{s}(x)$ is a solution of (1), involving x only and satisfying the boundary condition (i) and (ii). $u_{t}(x, t)$ is then a function defined by (4) satisfying (1).

Thus $u_{s}(x)$ is a steady state solution of (1) and $u_{t}(x, t)$ may therefore be regardedas a transient solution which decreases with increase of t.

To find $u_{s}(x)$

$$
\text { we have to solve the equation -------------=0 } \frac{\partial^{2} u}{\partial x^{2}}
$$

Solving, we get $u_{s}(x)=a x+b$

Here $u_{s}(0)=40, u_{s}(30)=60$.
Using the above conditions, we get $b=40, a=2 / 3$.

$$
\begin{aligned}
& 2
\end{aligned}
$$

To find $u_{t}(x, t)$

$$
u_{t}(x, t)=u(x, t)-u_{s}(x)
$$

Now putting $x=0$ and $x=30$ in (4), we have u_{t}
and

$$
\begin{equation*}
=u(0, t)-u_{s}(0)=40-40=0 \tag{0,t}
\end{equation*}
$$

$u_{t}(30, t)=\bar{u}(30, t)-u_{s}(30)=60-60=0$

$$
\text { Also } u_{t}(x, 0)=u(x, 0)-u_{s}(x)
$$

2

$$
=2 x+20-
$$

3

4

$$
=---x-203
$$

Hence the boundary conditions relative to the transient solution $u_{t}(x, t)$ are
$u_{t}(0, t)=0------------------------------(i v)$
$u_{t}(30, t)=0$
and
$u_{t}(x, 0)=(4 / 3) x-20$ (vi)

We have

$$
-\alpha^{2} \lambda^{2} t
$$

$u_{t}(x, t)=(A \cos \lambda x+$ e $B \sin \lambda x$)

Using condition (iv) and (v) in (7), we get

$$
=0 \& \lambda=--------
$$

Hence equation (7) becomes

The most general solution of (1) is

Using condition (vi),

Exercises

(1) Solve $\partial u / \partial t=\alpha^{2}\left(\partial^{2} u / \partial x^{2}\right)$ subject to the boundary conditions $u(0, t)=0$, $u(1, t)=0, u(x, 0)=x, 0<x<l$.
(2) Find the solution to the equation $\partial u / \partial t=\alpha^{2}\left(\partial^{2} u / \partial x^{2}\right)$ that satisfies the conditionsi. $u(0, t)=0$,
ii. $\quad u(l, t)=0, \forall t>0$,
iii. $u(x, 0)=x$ for $0<x<1 / 2$. $=1-x$ for $1 / 2<x<1$.
(3) Solve the equation $\partial \mathrm{u} / \partial \mathrm{t}=\alpha^{2}\left(\partial^{2} \mathrm{u} / \partial \mathrm{x}^{2}\right)$ subject to the boundary conditionsi. $u(0, t)=0$,
ii. $u(1, t)=0, \forall t>0$,
iii. $u(x, 0)=k x(l-x), k>0,0 \leq x \leq l$.
(4) A rod of length „I" has its ends A and B kept at $0^{\circ} \mathrm{C}$ and $120^{\circ} \mathrm{C}$ respectively until steady state conditions prevail. If the temperature at Bis reduced to $0^{\circ} \mathrm{C}$ and kept so whilethat of A is maintained, find the temperature distribution in the rod.
(5) A rod of length „I" has its ends A and B kept at $0^{\circ} \mathrm{C}$ and $120^{\circ} \mathrm{C}$ respectively until steady state conditions prevail. If the temperature at Bis reduced to $0^{\circ} \mathrm{C}$ and kept so while $10^{\circ} \mathrm{C}$ and at the same instant that at A is suddenly raised to $50^{\circ} \mathrm{C}$. Find the temperature distribution in the rod after time „t".
(6) A rod of length "," has its ends A and B kept at $0^{\circ} C$ and $100^{\circ} \mathrm{C}$ respectively until steady state conditions prevail. If the temperature of A is suddenly raised to $50^{\circ} \mathrm{C}$ andthat of B to
$150^{\circ} \mathrm{C}$, find the temperature distribution at the point of the rod and at any time.
(7) A rod of length 10 cm . has the ends A and B kept at temperatures $30^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$, respectively until the steady state conditions prevail. After some time, the temperature at A is lowered to $20^{\circ} \mathrm{C}$ and that of B to $40^{\circ} \mathrm{C}$, and then these temperatures are maintained.Find the subsequent temperature distribution.
(8) The two ends A and B of a rod of length 20 cm . have the temperature at $30^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ respectively until th steady state conditions prevail. Then the temperatures at theends A and B are changed to $40^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$ respectively. Find $u(x, t)$.
(9) A bar 100 cm . long, with insulated sides has its ends kept at $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ until steady state condition prevail. The two ends are then suddenly insulated and kept so. Findthe temperature distribution
(10) Solve the equation $\partial u / \partial t=\alpha^{2}\left(\partial^{2} u / \partial x^{2}\right)$ subject to the conditions (i) , $u^{\prime \prime}$ is notinfinite
as $\mathrm{t} \rightarrow \infty$ (ii) $\mathrm{u}=0$ for $\mathrm{x}=0$ and $\mathrm{x}=\pi, \forall \mathrm{t}$ (iii) $\mathrm{u}=\pi \mathrm{x}-\mathrm{x}^{2}$ for $\mathrm{t}=0$ in $(0, \pi)$.

[^0]: Solving equations (3), we get

