
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

 QUICK SORT

 Quick sort is also known as Partition-exchange sort based on the rule of Divide

and Conquer.

 It is a highly efficient sorting algorithm.

 Quick sort is the quickest comparison-based sorting algorithm.

 It is very fast and requires less additional space, only O(n log n) space is required.

 Quick sort picks an element as pivot and partitions the array around the picked

pivot.

 Algorithm for Quick Sort:

Step 1: Choose the highest index value as pivot.

Step 2: Take two variables to point left and right of the list excluding

pivot. Step 3: Left points to the low index.

Step 4: Right points to the high index.

Step 5: While value at left < (Less than) pivot move right.

Step 6: While value at right > (Greater than) pivot move

left.

Step 7: If both Step 5 and Step 6 does not match, swap left and right.

Step 8: If left = (Less than or Equal to) right, the point where they met is new pivot.

 Working of Quick sort Algorithm

Consider an unsorted array as follows

36, 34, 43, 11, 15, 20, 28, 45, 27, 32

 The following steps represents how to find the pivot value in an array.

 As we see, pivot value divides the list into two parts (partitions) and then each

part is processed for quick sort.

 Quick sort is a recursive function.

 We can call the partition function again.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

 Quicksort Complexity

Time Complexity

Best O(n*log n)

Worst O(n2)

Average O(n*log n)

Space Complexity O(log n)

Stability No

 Applications of quick sort:

Quicksort algorithm is used when

 the programming language is good for recursion

 time complexity matters

 space complexity matters

Example Program 5.2: Program for implementing Quick Sort

#include<stdio.h>

#include<conio.h>

//quick Sort function to Sort Integer array list

void quicksort(int array[], int firstIndex, int lastIndex)

{

//declaaring index variables

int pivotIndex, temp, index1, index2;

if(firstIndex < lastIndex)

{

//assigninh first element index as pivot element

pivotIndex = firstIndex;

index1 = firstIndex;

index2 = lastIndex;

//Sorting in Ascending order with quick sort

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

while(index1 < index2)

{

while(array[index1] <= array[pivotIndex] && index1 < lastIndex)

{

index1++;

}

while(array[index2]>array[pivotIndex])

{

index2--;

}

if(index1<index2)

{

//Swapping opertation

temp = array[index1];

array[index1] = array[index2];

array[index2] = temp;

}

}

//At the end of first iteration, swap pivot element with index2 element

temp = array[pivotIndex];

array[pivotIndex] = array[index2];

array[index2] = temp;

//Recursive call for quick sort, with partiontioning

quicksort(array, firstIndex, index2-1);

quicksort(array, index2+1, lastIndex);

}

}

int main()

{

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

//Declaring variables

int array[100],n,i;

//Number of elements in array form user input

printf("Enter the number of element you want to Sort : ");

scanf("%d",&n);

//code to ask to enter elements from user equal to n

printf("Enter Elements in the list : ");

for(i = 0; i < n; i++)

{

scanf("%d",&array[i]);

}

//calling quickSort function defined above

quicksort(array,0,n-1);

//print sorted array printf("Sorted elements: ");

for(i=0;i<n;i++)

printf(" %d",array[i]); getch();

return 0;

}

Output

Enter the number of element you want to sort: 5

Enter the elements in the list:

7

10

3

21

15

Sorted elements: 3 7 10 15 21

	QUICK SORT
	Algorithm for Quick Sort:
	Working of Quick sort Algorithm
	Quicksort Complexity

