AD3351 | DESIGN AND ANALYSIS OF ALGORITHMS

KNAPSACK PROBLEM

Given N items where each item has some weight and profit associated with it and also given a
bag with capacity W, [i.e., the bag can hold at most W weight in it]. The task is to put the items
into the bag such that the sum of profits associated with them is the maximum possible.

Note: The constraint here is we can either put an item completely into the bag or cannot put it at

all [It is not possible to put a part of an item into the bag].

Real time examples:

e A Thief who wants to steal the most valuable loot that fits into his knapsack,
e Atransportplanethathastodeliverthemostvaluablesetofitemstoaremotelocation

without exceeding the plane’s capacity.

The exhaustive-search approach to this problem leads to generating all the subsets of the set of n items
given, computing the total weight of each subset in order to identify feasible subsets (i.e., the ones with
the total weight not exceeding the knapsack capacity), and finding a subset of the largest value among

them.

wq =7 Wa = Wy =4 Wy =25
Vi = 542 v = E12 vi; = $40 vy = 525

]
knapsack itermn 1 item 2 iterm 3 iterm 4

FIGURE 2.5 Instance of the knapsack problem

Subset Total weight Total value
(o) 0 $0
{1} 7 $42
{2} 3 $12

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

AD3351 | DESIGN AND ANALYSIS OF ALGORITHMS

{3} 4 $40
{4} 5 $25
{1, 2} 10 $54
{1, 3} 11 not feasible
{1, 4} 12 not feasible
{2, 3} 7 $52
{2, 4} 8 $37
{3, 4} 9 $65 (Maximum-Optimum)
{1, 2, 3} 14 not feasible
{1, 2, 4} 15 not feasible
{1, 3, 4} 16 not feasible
{2,3,4} 12 not feasible
{1, 2,3, 4} 19 not feasible

FIGURE 2.6 knapsack problem’s solution by exhaustive search. The information about the

optimal selection is in bold.

Time efficiency: As given in the example, the solution to the instance of Figure 2.5 is
given in Figure 2.6. Since the number of subsets of an n-element set is 2", the exhaustive
search leads to a Q(2") algorithm, no matter how efficiently individual subsets are

generated.

Note: Exhaustive search of both the traveling salesman and knapsack problems leads to
extremely inefficient algorithms on every input. In fact, these two problems are the best-
known examples of NP-hard problems. No polynomial-time algorithm is known for any
NP-hard problem. Moreover, most computer scientists believe that such algorithms do not
exist. some sophisticated approaches like backtracking and branch-and-bound enable
us to solve some instances but not all instances of these in less than exponential time.

Alternatively, we can use one of many approximation algorithms.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

