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KNAPSACK PROBLEM

Given N items where each item has some weight and profit associated with it and also given a
bag with capacity W, [i.e., the bag can hold at most W weight in it]. The task is to put the items
into the bag such that the sum of profits associated with them is the maximum possible.

Note: The constraint here is we can either put an item completely into the bag or cannot put it at

all [It is not possible to put a part of an item into the bag].

Real time examples:

e A Thief who wants to steal the most valuable loot that fits into his knapsack,
e Atransportplanethathastodeliverthemostvaluablesetofitemstoaremotelocation

without exceeding the plane’s capacity.

The exhaustive-search approach to this problem leads to generating all the subsets of the set of n items
given, computing the total weight of each subset in order to identify feasible subsets (i.e., the ones with
the total weight not exceeding the knapsack capacity), and finding a subset of the largest value among

them.
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FIGURE 2.5 Instance of the knapsack problem

Subset Total weight Total value
(o) 0 $0
{1} 7 $42
{2} 3 $12
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{3} 4 $40
{4} 5 $25
{1, 2} 10 $54
{1, 3} 11 not feasible
{1, 4} 12 not feasible
{2, 3} 7 $52
{2, 4} 8 $37
{3, 4} 9 $65 (Maximum-Optimum)
{1, 2, 3} 14 not feasible
{1, 2, 4} 15 not feasible
{1, 3, 4} 16 not feasible
{2,3,4} 12 not feasible
{1, 2,3, 4} 19 not feasible

FIGURE 2.6 knapsack problem’s solution by exhaustive search. The information about the

optimal selection is in bold.

Time efficiency: As given in the example, the solution to the instance of Figure 2.5 is
given in Figure 2.6. Since the number of subsets of an n-element set is 2", the exhaustive
search leads to a Q(2") algorithm, no matter how efficiently individual subsets are

generated.

Note: Exhaustive search of both the traveling salesman and knapsack problems leads to
extremely inefficient algorithms on every input. In fact, these two problems are the best-
known examples of NP-hard problems. No polynomial-time algorithm is known for any
NP-hard problem. Moreover, most computer scientists believe that such algorithms do not
exist. some sophisticated approaches like backtracking and branch-and-bound enable
us to solve some instances but not all instances of these in less than exponential time.

Alternatively, we can use one of many approximation algorithms.
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