
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY  

CS3391 OBJECT ORIENTED PROGRAMMING 

 

 CONTRUCTORS 

Definition: 

 

 Rules for creating constructor: 
 

1. Constructor name must be same as its class name 
2. Constructor must have no explicit return type 
3. Constructors can be declared public or private (for a Singleton) 
4. Constructors can have no-arguments, some arguments and var-args; 
5. A constructor is always called with the new operator 
6. The default constructor is a no-arguments one; 
7. If you don‘t write ANY constructor, the compiler will generate the default one; 
8. Constructors CAN‘T be static, final or abstract; 
9. When overloading constructors (defining methods with the same name 

but with different arguments lists) you must define them with different 
arguments lists (as number or as type) 

 
 What happens when a constructor is called? 

 

1. All data fields are initialized to their default value (0, false or null). 
2. All field initializers and initialization blocks are executed, in the order in 

which theyoccur in the class declaration. 
3. If the first line of the constructor calls a second constructor, then the 

body of the second constructor is executed. 
4. The body of the constructor is executed. 

 
  Types of constructors 

 
There are two types of constructors: 

1. Default constructor 
2. no-arg constructor 
3. Parameterized constructor 

 
 
 
 
 
 
 

 

 

Constructor is a special type of method that is used to initialize the object. 
Constructor is invoked at the time of object creation. Once defined, the constructor is 
automatically called immediately after the object is created, before the new operator 
completes. 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY  

CS3391 OBJECT ORIENTED PROGRAMMING 

 

 

 

 

1. Default Constructor 

 Default constructor refers to a constructor that is automatically created by 
compiler in the absence of explicit constructors. 

 
Rule: If there is no constructor in a class, compiler automatically creates a default 
constructor. 
Purpose of Default Constructor: It is used to provide the default values to the object 
members like 0, null etc. depending on the data type. 

 
Example: 

 
class student 
{ 

int  id; 
String name; 
void display() 
{ 

System.out.println(id+&quot; &quot;+name); 
} 
public static void main(String args[]) 
{ 

student s1=new student(); 
student s2=new student(); 
s1.display(); 
s2.display(); 

} 
} 

 
 
 
 

 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY  

CS3391 OBJECT ORIENTED PROGRAMMING 

 

Output:  
0 null 
1 null 

 

2) No-Argument Constructor 
 Constructor without parameters is called no-argument constructor. 

 
Purpose of No-Arg Constructor: It is used to provide values to be common for all 
objects of the class. 

 
Syntax of default constructor: 

 
Classname() 
{ 

 

 
Example: 

// Constructor body 
} 

 
class Box 
{ 

double width; 
double height; 
double depth; 

 
// This is the constructor for Box 
Box() 
{ 

System.out.println(“Constructing Box…”); 
width=10; 

height=10; 
depth=10; 

} 
// Compute and return volume 
double volume() 
{ 

return width*height*depth; 
} 

} 
class BoxDemo 
{ 

public static void main(String arg[]) 
{ 

// declare, allocate and initialize Box objects 

 

 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY  

CS3391 OBJECT ORIENTED PROGRAMMING 

 

Box mybox1=new Box(); 
Box mybox2=new Box(); 
double vol; 

 
// Get volume of first box 

vol=mybox1.volume(); 
System.out.println(“Volume is ” +vol); 

 

// Get volume of second box 

vol=mybox2.volume(); 
System.out.println(“Volume is ”+vol); 

} 
} 

Output: 
 

Constructing Box 
Constructing Box 
Volume is 1000.0 
Volume is 1000.0 

 
As you can see, both mybox1 and mybox2 were initialized by the Box( ) 
constructor when they were created. Since the constructor gives all boxes 
the same dimensions, 10 by 10 by 10, both mybox1 and mybox2 will have 
the same volume. 

 
3. Parameterized Constructor 

A constructor that takes parameters is known as parameterized constructor. 

 
Purpose of parameterized constructor 

Parameterized constructor is used to provide different values to the distinct 
objects. 

 
Example: 

 
class Box 
{ 

double width; 
double height; 
double depth; 

 
// This is the constructor for Box 

 
 

 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY  

CS3391 OBJECT ORIENTED PROGRAMMING 

 

Box(double w, double h, double d) 
{ 

width=w;height=h;depth=d; 
} 

 

// Compute and return volume 

double volume() 
{ 

return width*height*depth; 
} 

} 
class BoxDemo 
{ 
public static void main(String arg[]) 
{ 

// declare, allocate and initialize Box objects 

Box mybox1=new Box(10,20,15); 
Box mybox2=new Box(3,6,9); 
double vol; 
// Get volume of first box 

 
vol=mybox1.volume(); 
System.out.println(“Volume is ” +vol); 

 

// Get volume of second box 

vol=mybox2.volume(); 
System.out.println(“Volume is ” +vol); 

} 
} 

 

Output: 

Volume is 3000.0 
Volume is 162.0 

 
As you can see, each object is initialized as specified in the parameters to its 
constructor. Forexample, in the following line, 
Box mybox1 = new Box(10, 20, 15); 

the values 10, 20, and 15 are passed to the Box( ) constructor when new creates the 
object. Thus, 
mybox1‘s copy of width, height, and depth will contain the values 10, 20, and 15, 
respectively. 

 
 

 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY  

CS3391 OBJECT ORIENTED PROGRAMMING 

 

Difference between constructor and method: 

There are many differences between constructors and methods. 
They are given 

below 

Constructor Method 

Constructor is used to initialize the 

state of anobject. 

Method is used to expose 

behaviour of anobject. 

Constructor must not have return 

type. 

Method must have return type. 

Constructor is invoked implicitly. Method is invoked explicitly. 

The java compiler provides a default 
constructor if you don't have any 
constructor. 

Method is not provided by 
compiler in anycase. 

Constructor name must be same as 

the classname. 

Method name may or may not be 

same asclass name. 

 
“this” KEYWORD: 

Definition: 

 

 Usage of this keyword 

1. this keyword can be used to refer current class instance variable. 
2. this() can be used to invoke current class constructor. 
3. this keyword can be used to invoke current class method (implicitly) 
4. this can be passed as an argument in the method call. 
5. this can be passed as argument in the constructor call. 
6. this keyword can also be used to return the current class instance. 

 

Instance Variable Hiding: 
 

It is illegal in Java to declare two local variables with the same name inside the same or 
enclosing scopes. 
We can also have local variables, which overlap with the names of the class‘ instance 

 

 

 

In java, this is a reference variable that refers to the current object. 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY  

CS3391 OBJECT ORIENTED PROGRAMMING 

 

variables. 

However, when a local variable has the same name as an instance variable, the 
local variable hides the instance variable. 
We can use “this” keyword to to resolve any namespace collisions that might occur 
between instance variables and local variables. 

 
Example: 

class Student 
{ 
int rollno; 
String name; 
float fee; 
Student(int rollno,String name,float fee) 
{ 

this.rollno=rollno; 
this.name=name; 
this.fee=fee; 

} 
void display() 
{ 

System.out.println(rollno+" "+name+" "+fee); 
} 
} 

 
class TestThis2 
{ 
public static void main(String args[]) 
{ 

Student s1=new Student(111,"ankit",5000f); 
Student s2=new Student(112,"sumit",6000f); 
s1.display(); 
s2.display(); 

} 
} 

 
 

 

Output: 
 
 

111 ankit 5000 

112 sumit 6000 
 

 

 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY  

CS3391 OBJECT ORIENTED PROGRAMMING 

 

CONSTRUCTOR OVERLOADING: 

Definition: 

 
Example of Constructor Overloading: 

class Box 
{ 

double width; 
double height; 
double depth; 

 
// constructor used when all the dimensions are specified 

Box(double w, double h, double d) 
{ 

width=w; 
height=h; 
depth=d; 

} 
 

// constructor used when no dimensions are specified 

Box() 
{ 

width=-1; 
height=-1; 
depth=-1; 

} 
 

// constructor used when cube is created 

Box(double len) 
{ 

width = height = depth = len; 
} 

 

// Compute and return volume 

double volume() 
{ 

return width*height*depth; 
} 

} 
 

 

 

Constructor overloading is a technique in Java in which a class can have any 
number of constructors that differ in parameter lists. The compiler differentiates 
these constructors by taking into account the number of parameters in the list and 
their type. 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY  

CS3391 OBJECT ORIENTED PROGRAMMING 

 

class ConsOverloadDemo 
{ 
public static void main(String arg[]) 
{ 

// declare, allocate and initialize Box objects 

Box mybox1=new Box(10,20,15); 
Box mybox2=new Box(); 
Box mybox3=new Box(7); 
double vol; 

 
// Get volume of first box 

vol=mybox1.volume(); 
System.out.println(“Volume of Box1 is “+vol); 

 
// Get volume of second box 

vol=mybox2.volume(); 
System.out.println(“Volume of Box2 is “+vol); 

 

// Get volume of cube 

vol=mybox2.volume(); 
System.out.println(“Volume of Cube is “+vol); 

} 
} 

 
Output: 

 
Volume of Box1 is 3000.0 
Volume of Box2 is -1.0 
Volume of the cube is 343.0 

 
As we can see, the proper overloaded constructor is called based upon the 
parameters specifiedwhen new is executed. 

 
CONSTRUCTOR CHAINING: 

Constructor chaining is the process of calling one constructor of a class from 
another constructor of the same class or another class using the current object 
of the class. 

 It occurs through inheritance. 

 
Ways to achieve Constructor Chaining: 

We can achieve constructor chaining in two ways: 

 

 
 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY  

CS3391 OBJECT ORIENTED PROGRAMMING 

 

o Within the same class: If we want to call the constructor from the same class, then 
we use this keyword. 

o From the base class: If we want to call the constructor that belongs to different 
classes (parent and child classes), we use the super keyword to call the constructor 
from the base class. 

 

 
Rules of Constructor Chaining: 

 An expression that uses this keyword must be the first line of the constructor. 
 Order does not matter in constructor chaining. 
 There must exist at least one constructor that does not use this 

 
Advantage: 
 Avoids duplicate code while having multiple constructors. 
 Makes code more readable 

 
Example 

 

class Shape 
{ 

int radius,length,breadth; 
 

Shape(int radius) 
{ 

this.radius=radius; 
} 

 
 

 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY  

CS3391 OBJECT ORIENTED PROGRAMMING 

 

Shape(int r,int l,int b) 
{ 

this(r); 
length=l; 
breadth=b; 

} 
 

void areaCircle() 
{ 

System.out.println("Area of Circle is "+(3.14*radius*radius)); 
} 
void areaRectangle() 
{ 

System.out.println("Area of Rectangle is "+(length*breadth)); 
} 

} 
public class ConstructorChaining 
{ 

public static void main(String arg[]) 
{ 
Shape s1=new Shape(5,10,50); 
s1.areaCircle(); 
s1.areaRectangle(); 
} 

} 
 

 

Output: 
 

Area of Circle is 78.5 
Area of Rectangle is 500 


	Definition:
	 What happens when a constructor is called?
	  Types of constructors
	1. Default Constructor
	Example:
	Output:
	2) No-Argument Constructor
	Syntax of default constructor:
	Example: (1)
	Output: (1)
	3. Parameterized Constructor
	Purpose of parameterized constructor
	Example: (2)
	Output: (2)
	Box mybox1 = new Box(10, 20, 15);

	Difference between constructor and method:
	“this” KEYWORD:
	 Usage of this keyword
	Instance Variable Hiding:
	However, when a local variable has the same name as an instance variable, the local variable hides the instance variable.
	Example: (3)
	Output: (3)
	CONSTRUCTOR OVERLOADING:
	Example of Constructor Overloading:
	Output: (4)
	CONSTRUCTOR CHAINING:
	Ways to achieve Constructor Chaining:
	Rules of Constructor Chaining:
	Advantage:
	Example
	Output: (5)

