

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Dr.I.Vallirathi, Asso.Prof/CSE CS3451-Introduction to Operating System

IV USER AND OPERATING SYSTEM INTERFACE

1. User Interfaces

There are different types of user interfaces each of which provides a different functionality:

 Command Based Interface

 Graphical User Interface

 Touch Based Interface

 Voice Based Interface

 Gesture Based Interface

 Command Based Interface

Command based interface requires a user to enter the commands to perform different tasks like

creating, opening, editing or deleting a file, etc. The user has to remember the names of all such programs

or specific commands which the operating system supports. The primary input device used by the user

for command based interface is the keyboard. Command-based interface is often less interactive and

usually allows a user to run a single program at a time. Examples of operating systems with command-

based interfaces include MS-DOS and Unix.

Command Based Interface Graphical User Interface

 Graphical User Interface

Users run programs or give instructions to the computer in the form of icons, menus and other

visual options. Icons usually represent files and programs stored on the computer and windows represent

running programs that the user has launched through the operating system. The input devices used to

interact with the GUI commonly include the mouse and the keyboard. Examples of operating systems

with GUI interfaces include Microsoft Windows, Ubuntu, Fedora and Macintosh, among others.

https://getuplearn.com/blog/types-of-operating-system/#types-of-user-interface
https://getuplearn.com/blog/types-of-operating-system/#command-based-interface
https://getuplearn.com/blog/types-of-operating-system/#graphical-user-interface
https://getuplearn.com/blog/types-of-operating-system/#touch-based-interface
https://getuplearn.com/blog/types-of-operating-system/#voice-based-interface
https://getuplearn.com/blog/types-of-operating-system/#gesture-based-interface
https://getuplearn.com/blog/types-of-operating-system/#command-based-interface
https://getuplearn.com/blog/types-of-operating-system/#command-based-interface
https://getuplearn.com/blog/types-of-operating-system/#command-based-interface
https://getuplearn.com/blog/types-of-operating-system/#graphical-user-interface
https://getuplearn.com/blog/types-of-operating-system/#graphical-user-interface
https://getuplearn.com/blog/types-of-operating-system/#graphical-user-interface

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Dr.I.Vallirathi, Asso.Prof/CSE CS3451-Introduction to Operating System

 Touch Based Interface

Today smartphones, tablets, and PCs allow users to interact with the system simply using the

touch input. Using the touchscreen, a user provides inputs to the operating system, which are interpreted

by the OS as commands like opening an app, closing an app, dialing a number, scrolling across apps, etc.

Examples of popular operating systems with touch-based interfaces are Android and iOS. Windows 8.1

and 10 also support touch-based interfaces on touchscreen devices.

Touch Based Interface Voice Based Interface

 Voice Based Interface

Modern computers have been designed to address the needs of all types of users including people

with special needs and people who want to interact with computers or smartphones while doing some

other task. For users who cannot use input devices like the mouse, keyboard, and touchscreens,

modern operating systems provide other means of human-computer interaction. Users today can use

voice-based commands to make a computer work in the desired way. Some operating systems which

provide voice-based control to users include iOS (Siri), Android (Google Now or “OK Google”),

Microsoft Windows 10 (Cortana), and so on.

 Gesture Based Interface

Some smartphones based on Android and iOS as well as laptops let users interact with the devices

using gestures like waving, tilting, eye motion, and shaking. This technology is evolving faster and it

has promising potential for application in gaming, medicine, and other areas.

https://getuplearn.com/blog/types-of-operating-system/#touch-based-interface
https://getuplearn.com/blog/types-of-operating-system/#touch-based-interface
https://getuplearn.com/blog/types-of-operating-system/#voice-based-interface
https://getuplearn.com/blog/types-of-operating-system/#voice-based-interface
https://getuplearn.com/blog/types-of-operating-system/#gesture-based-interface

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Dr.I.Vallirathi, Asso.Prof/CSE CS3451-Introduction to Operating System

a. SYSTEM CALLS

A system call is a mechanism that provides the interface between a process and the

operating system. It is a programmatic method in which a computer program requests a service from the

kernel of the OS. System call offers the services of the operating system to the user programs via API

(Application Programming Interface). System calls are the only entry points for the kernel system.

Working of System Call

Step 1) The processes executed in the user mode till the time a system call interrupts it.

Step 2) After that, the system call is executed in the kernel-mode on a priority basis.

Step 3) Once system call execution is over, control returns to the user mode.,

Step 4) The execution of user processes resumed in Kernel mode.

Need of System Call

 Reading and writing from files demand system calls.

 If a file system wants to create or delete files, system calls are required.

 System calls are used for the creation and management of new processes.

 Network connections need system calls for sending and receiving packets.

 Access to hardware devices like scanner, printer, need a system call.

Example of how system calls are used.

For Example

Writing a simple program to read data from one file and copy them to another file.

The first input that the program will need is the names of the two files: the input file and the

output file. These names can be specified in many ways, depending on the operating-system design.

One approach is to pass the names of the two files as part of the command For

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Dr.I.Vallirathi, Asso.Prof/CSE CS3451-Introduction to Operating System

example, the UNIX cp command:

cp in.txt out.txt

This command copies the input file in.txt to the output file out.txt.

A second approach is for the program to ask the user for the names.

In an interactive system, this approach will require a sequence of system calls, first to write a

prompting message on the screen and then to read from the keyboard the characters that define the two

files. On mouse-based and icon-based systems, a menu of file names is usually displayed in a window.

The user can then use the mouse to select the source name, and a window can be opened for the

destination name to be specified. This sequence requires many I/O system calls.

Once the two file names have been obtained, the program must open the input file and create and open

the output file. Each of these operations requires another system call. Possible error conditions for each

system call must be handled. For example, when the program tries to open the input file, it may find that

there is no file of that name or that the file is protected against access.

In these cases, the program should output an error message (another sequence of system calls)

and then terminate abnormally (another system call). If the input file exists, then we must create a new

output file. We may find that there is already an output file with the same name. This situation may cause

the program to abort (a system call), or we may delete the existing file (another system call) and create

a new one (yet another system call). Another option, in an interactive system, is to ask the user (via a

sequence of system calls to output the prompting message and to read the response from the terminal)

whether to replace the existing file or to abort the program.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Dr.I.Vallirathi, Asso.Prof/CSE CS3451-Introduction to Operating System

When both files are set up, we enter a loop that reads from the input file (a system call) and writes

to the output file (another system call). Each read and write must return status information regarding

various possible error conditions. On input, the program may find that the end of the file has been reached

or that there was a hardware failure in the read (such as a parity error). The write operation may encounter

various errors, depending on the output device (for example, no more available disk space).

Finally, after the entire file is copied, the program may close both files (two system calls), write

a message to the console or window (more system calls), and finally terminate normally (the final system

call).

Passing of Parameters as a table

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Dr.I.Vallirathi, Asso.Prof/CSE CS3451-Introduction to Operating System

Rules for passing Parameters for System Call

Here are general common rules for passing parameters to the System Call:

 Parameters should be pushed on or popped off the stack by the operating system.

 Parameters can be passed in registers. For five or fewer parameters, registers are used.

 More than five parameters, the block method is used. The parameters are generally stored in a

block, or table, in memory, and the address of the block is passed as a parameter in a register

Types of System calls

Here are the five types of System Calls in OS:

 Process Control

 File Management

 Device Management

 Information Maintenance

 Communications

Process Control

This system calls perform the task of process creation, process termination, etc.

Functions:

 End and Abort

 Load and Execute

 Create Process and Terminate Process

 Wait and Signal Event

 Allocate and free memory

File Management

File management system calls handle file manipulation jobs like creating a file, reading, and

writing, etc.

Functions:

 Create a file

 Delete file

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Dr.I.Vallirathi, Asso.Prof/CSE CS3451-Introduction to Operating System

 Open and close file

 Read, write, and reposition

 Get and set file attributes

Device Management

Device management does the job of device manipulation like reading from device buffers, writing into

device buffers, etc.

Functions:

 Request and release device

 Logically attach/ detach devices

 Get and Set device attributes

Information Maintenance

It handles information and its transfer between the OS and the user program.

Functions:

 Get or set time and date

 Get process and device attributes

Communication:

These types of system calls are specially used for interprocess communications.

Functions:

 Create, delete communications connections

 Send, receive message

 Help OS to transfer status information

 Attach or detach remote devices

Important System Calls Used in OS wait()

A process needs to wait for another process to complete its execution. This occurs when a parent

process creates a child process, and the execution of the parent process remains suspended until its child

process executes. The suspension of the parent process automatically occurs with a wait() system call.

When the child process ends execution, the control moves back to the parent process.

fork()

Processes use this system call to create processes that are a copy of themselves. With the help of

this system Call parent process creates a child process, and the execution of the parent process will be

suspended till the child process executes.

exec()

This system call runs when an executable file in the context of an already running process that

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Dr.I.Vallirathi, Asso.Prof/CSE CS3451-Introduction to Operating System

replaces the older executable file. However, the original process identifier remains as a new process is

not built, but stack, data, head, data, etc. are replaced by the new process.

kill():

The kill() system call is used by OS to send a termination signal to a process that urges the process

to exit. However, a kill system call does not necessarily mean killing the process and can have various

meanings.

exit():

The exit() system call is used to terminate program execution. Specially in the multi- threaded

environment, this call defines that the thread execution is complete. The OS reclaims resources that were

used by the process after the use of exit() system call.

2. SYSTEM PROGRAMS

System programs provide a convenient environment for program development and execution. It can be

divided into:

 File manipulation

 Status information

 File modification

 Programming language support

 Program loading and execution

 Communications

 Application programs

 File management.

These programs create, delete, copy, rename, print, list, and generally access and manipulate

files and directories.

 Status information.

Some programs simply ask the system for the date, time, amount of available memory or disk

space, number of users, or similar status information. Others are more complex, providing detailed

performance, logging, and debugging information. Typically, these programs format and print the output

to the terminal or other output devices or files or display it in a window of the GUI. Some systems also

support a registry, which is used to store and retrieve configuration information.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Dr.I.Vallirathi, Asso.Prof/CSE CS3451-Introduction to Operating System

 File modification: .

Several text editors may be available to create and modify the content of files stored on disk or

other storage devices. There may also be special commands to search contents of files or perform

transformations of the text.

 Programming-language support:

Compilers, assemblers, debuggers, and interpreters for common programming languages (such

as C, C++, Java, and Python) are often provided with the operating system or available as a

separate download.

 Program loading and execution:

Once a program is assembled or compiled, it must be loaded into memory to be executed. The

system may provide absolute loaders, relocatable loaders, linkage editors, and overlay loaders.

Debugging systems for either higher-level languages or machine language are needed as well.

 Communications:

These programs provide the mechanism for creating virtual connections among processes,

users, and computer systems. They allow users to send messages to one another’s screens, to

browse web pages, to send e-mail messages, to log in remotely, or to transfer files from one machine to

another.

 Background services:

All general-purpose systems have methods for launching certain system-program processes at

boot time. Some of these processes terminate after completing their tasks, while others continue to run

until the system is halted. Constantly running system-program processes are known as services,

subsystems, or daemons

