
UNIT IV OPEN PLATFORMS AND PROGRAMMING

4.1.1 IOT deployment for Raspberry Pi /Arduino platform

A decade ago, working around electronics involved knowledge in physics and math, expensive lab

equipment, a laboratory type setup and important of all, love for electronics. But the picture has changed

over the decade or so where the above-mentioned factors became irrelevant to work around electronics

except for the last part: love for electronics. One such product which made use of the above specified and

many other reasons and made electronics be able reach anyone regardless of their background is

“Arduino”.

Introduction

Arduino is an open-source prototyping platform in electronics based on easy-to-use hardware and

software. Subtly speaking, Arduino is a microcontroller based prototyping board which can be used in

developing digital devices that can read inputs like finger on a button, touch on a screen, light on a sensor

etc. and turning it in to output like switching on an LED, rotating a motor, playing songs through a speaker

etc.

The Arduino board can be programmed to do anything by simply programming the microcontroller on

board using a set of instructions for which, the Arduino board consists of a USB plug to communicate

with your computer and a bunch of connection sockets that can be wired to external devices like motors,

LEDs etc. The aim of Arduino is to introduce the world of electronics to people who have small to no

experience in electronics like hobbyists, designers, artists etc.

Arduino is based on open source electronics project i.e. all the design specifications, schematics, software

are available openly to all the users. Hence, Arduino boards can bought from vendors as they are

commercially available or else you can make your own board by if you wish i.e. you can download the

schematic from Arduino’s official website, buy all the components as per the design specification, assemble

all the components, and make your own board.

Hardware and Software

Arduino boards are generally based on microcontrollers from Atmel Corporation like 8, 16 or 32 bit AVR

architecture based microcontroller.

The important feature of the Arduino boards is the standard connectors. Using these connectors, we can

connect the Arduino board to other devices like LEDs or add-on modules called Shields. The Arduino

boards also consists of on board voltage regulator and crystal oscillator. They also consist of USB to serial

adapter using which the Arduino board can be programmed using USB connection.

In order to program the Arduino board, we need to use IDE provided by Arduino. The Arduino IDE is based

on Processing programming language and supports C and C++.

Types of Arduino Boards

There are many types of Arduino boards available in the market but all the boards have one thing in

common: they can be programmed using the Arduino IDE. The reasons for different types of boards are

different power supply requirements, connectivity options, their applications etc.

Arduino boards are available in different sizes, form factors, different no. of I/O pins etc. Some of the

commonly known and frequently used Arduino boards are Arduino UNO, Arduino Mega, Arduino Nano,

Arduino Micro and Arduino Lilypad.

Arduino UNO

The most common version of Arduino is the Arduino Uno. This board is what most people are talking about

when they refer to an Arduino. In the next step, there is a more complete rundown of its features.

Arduino Uno Features

Some people think of the entire Arduino board as a microcontroller, but this is inaccurate. The Arduino

board actually is a specially designed circuit board for programming and prototyping with Atmel

microcontrollers.

The nice thing about the Arduino board is that it is relatively cheap, plugs straight into a computer's USB

port, and it is dead-simple to setup and use (compared to other development boards).

Some of the key features of the Arduino Uno include:

An open source design. The advantage of it being open source is that it has a large community

of people using and troubleshooting it This makes it easy to find someone to help you debug your projects.

An easy USB interface . The chip on the board plugs straight into your USB port and registers on your

computer as a virtual serial port. This allows you to interface with it as through it were a serial device. The

benefit of this setup is that serial communication is an extremely easy (and time-tested) protocol, and USB

makes connecting it to modern computers really convenient.

 Very convenient power management and built-in voltage regulation. You can connect an external

power source of up to 12v and it will regulate it to both 5v and 3.3v. It also can be powered

directly off of a USB port without any external power.

 A 16mhz clock. This makes it not the speediest microcontroller around, but fast enough for most

applications.

 32 KB of flash memory for storing your code.

 13 digital pins and 6 analog pins. These pins allow you to connect external hardware to your

Arduino. These pins are key for extending the computing capability of the Arduino into the real

world. Simply plug your devices and sensors into the sockets that correspond to each of these pins

and you are good to go.

 An ICSP connector for bypassing the USB port and interfacing the Arduino directly as a serial

device. This port is necessary to re-bootload your chip if it corrupts and can no longer talk to your

computer.

 An on-board LED attached to digital pin 13 for fast an easy debugging of code.

Step 3: Arduino IDE

Before you can start doing anything with the Arduino, you need to download and install the Arduino

IDE (integrated development environment). From this point on we will be referring to the Arduino IDE

as the Arduino Programmer.

The Arduino Programmer is based on the Processing IDE and uses a variation of the C and C++

programming languages.

You can find the most recent version of the Arduino Programmer on this page.

Step 4: Plug It In

Connect the Arduino to your computer's USB port.

Please note that although the Arduino plugs into your computer, it is not a true USB device. The board has

a special chip that allows it to show up on your computer as a virtual serial port when it is plugged into a

USB port. This is why it is important to plug the board in. When the board is

not plugged in, the virtual serial port that the Arduino operates upon will not be present

It is also good to know that every single Arduino has a unique virtual serial port address. This means that

every time you plug in a different Arduino board into your computer, you will need to reconfigure the serial

port that is in use.

Step 5: Settings

Before you can start doing anything in the Arduino programmer, you must set the board-type

and serial port.

To set the board, go to the following:

Tools --> Boards

Select the version of board that you are using. Since I have an Arduino Uno plugged

in, I obviously selected "Arduino Uno."

To set the serial port, go to the following: Tools --> Serial Port

Select the serial port that looks like:

/dev/tty.usbmodem [random numbers]

Step 6: Run a Sketch

Arduino programs are called sketches. The Arduino programmer comes with a ton of example sketches

preloaded. This is great because even if you have never programmed anything in your life, you can load

one of these sketches and get the Arduino to do something.

To get the LED tied to digital pin 13 to blink on and off, let's load the blink example.

The blink example can be found here:

Files --> Examples --> Basics --> Blink

The blink example basically sets pin D13 as an output and then blinks the test LED on the Arduino

board on and off every second.

Once the blink example is open, it can be installed onto the ATMEGA328 chip by pressing the upload

button, which looks like an arrow pointing to the right.

Notice that the surface mount status LED connected to pin 13 on the Arduino will start to blink. You can

change the rate of the blinking by changing the length of the delay and pressing the upload button again.

Step 7: Serial Monitor

The serial monitor allows your computer to connect serially with the Arduino. This is important because

it takes data that your Arduino is receiving from sensors and other devices and displays it in real-time on

your computer. Having this ability is invaluable to debug your code and understand what number values

the chip is actually receiving.

For instance, connect center sweep (middle pin) of a potentiometer to A0, and the outer pins, respectively,

to 5v and ground. Next upload the sketch shown below:

File --> Examples --> 1.Basics --> AnalogReadSerial Click the button to engage the serial monitor which

looks like a magnifying glass. You can now see the numbers being read by the analog pin in the serial

monitor. When you turn the knob the numbers will increase and decrease.

The numbers will be between the range of 0 and 1023. The reason for this is that the analog pin is

converting a voltage between 0 and 5V to a discreet number.

Step 8: Digital In

The Arduino has two different types of input pins, those being analog and digital. To begin with, lets look

at the digital input pins

Digital input pins only have two possible states, which are on or off. These two on and off states are also

referred to as:

• HIGH or LOW

• 1 or 0

• 5V or 0V.

This input is commonly used to sense the presence of voltage when a switch is opened or closed. Digital

inputs can also be used as the basis for countless digital communication protocols. By creating a 5V

(HIGH) pulse or 0V (LOW) pulse, you can create a binary signal, the basis of all computing. This is useful

for talking to digital sensors like a PING ultrasonic sensor, or communicating with other devices.

Step 9: Analog In

Aside from the digital input pins, the Arduino also boasts a number of analog input pins.

Analog input pins take an analog signal and perform a 10-bit analog-to-digital (ADC) conversion to turn

it into a number between 0 and 1023 (4.9mV steps).

This type of input is good for reading resistive sensors. These are basically sensors which provide

resistance to the circuit. They are also good for reading a varying voltage signal between 0 and 5V. This is

useful when interfacing with various types of analog circuitry.

If you followed the example in Step 7 for engaging the serial monitor, you have already tried using an

analog input pin.

Step 10: Digital Out

A digital out pin can be set to be HIGH (5v) or LOW (0v). This allows you to turn things on and off.

Aside from turning things on and off (and making LEDs blink), this form of output is convenient for a

number of applications.

Most notably, it allows you to communicate digitally. By turning the pin on and off rapidly, you are

creating binary states (0 and 1), which is recognized by countless other electronic devices as a binary

signal. By using this method, you can communicate using a number of different protocols.

Digital communication is an advanced topic, but to get a general idea of what can be done, check out the

Interfacing With Hardware page.

If you followed the example in Step 6 for getting an LED to blink, you have already tried using a digital

output pin.

Step 11: Analog Out

As mentioned earlier, the Arduino has a number of built in special functions. One of these special

functions is pulse width modulation, which is the way an Arduino is able to create an analog-like

output.

Pulse width modulation - or PWM for short - works by rapidly turning the PWM pin high (5V) and low

(0V) to simulate an analog signal. For instance, if you were to blink an LED on and off rapidly enough

(about five milliseconds each), it would seem to average the brightness and only appear to be receiving

half the power. Alternately, if it were to blink on for 1 millisecond and then blink off for 9 millisecond,

the LED would appear to be 1/10 as bright and only be receiving 1/10 the voltage.

PWM is key for a number of applications including making sound, controlling the brightness of lights,

and controlling the speed of motors.

To try out PWM yourself, connect an LED and 220 ohm resistor to digital pin 9, in series to ground.

Run the following example code:

File --> Examples --> 3.Analog --> Fading

4.1.2 Raspberry Pi

Raspberry Pi is a low-cost pocket computer that is very economical to own. It is about the size of

an ATM Card and can work as a fully functional computer in certain normal use cases, like working with

simple applications, playing low-end games, etc. It was first released in 2012 by the Raspberry Pi

foundation with the aim to provide easy access to computing education to everyone. It can cost as less as

5$ to a maximum price of 100$ (which is rare).

Scope

we will be understanding Operating systems that can be installed on a Raspberry Pi.

• We'll learn about What an operating system in general is.

• We'll go through a Variety of Operating Systems that a Raspberry Pi can run.

Introduction

As read above, Raspberry Pi is a very low-cost computer that comes along with the advantage of

portability. However, being in such a small form factor, it gets bounded by the type of hardware to use in

making it; hence, it will be significantly tough to run regular operating systems on it.

Due to this, specific operating systems were designed to power a Raspberry Pi; some of them were entirely

new, while some originated from existing popular operating systems. Most of the Raspberry Pi OS is Linux

based, but it also has windows 10-based Raspberry Pi OS (Windows 10 IoT core) built explicitly for low-

powered devices like this.

What is an Operating System?

The technical definition is An operating system is an interface between the hardware of a

machine and the user who is using it, but what does this really mean? It means it is basically the medium

using which we communicate with our computer machine. It does not matter if we have the fastest system

in the world; at the end of the day, that is just hardware, an object; and we do not know how to work with

it, so we need some medium that works as an intermediate between us and the computer, i.e., when we

press ctrl on our keyboard, it should instruct the computer what to react based on that; when we want to

open some application, it should provide us a way to do so, by listing all the available applications on the

system.

Meaning an operating system is a software program that helps us to use and to connect with the

computer hardware. For example, if we want to use our mouse or keyboard, only with the help of an OS we

can do that; if we want to install some program on our computer, we would be needing an OS; if we want

to create a file, we need an OS; we want to delete a file, we would again be

needing an OS, i.e., without an operating system we cannot use the computer hardware, we would be

needing some underlying software, i.e., some operating system, using which we would do so.

What is a Raspberry Pi Operating System

Now, what is Raspberry Pi operating system? Before that, let's first try to understand what Raspberry Pi is.

Raspberry Pi is a small, low-cost computer, and its size is about the size of an ATM card, which is developed

by the Raspberry Pi foundation. The organization's mission is to educate people in computing and to provide

easier access to computer education.

The above image is a picture of a Raspberry Pi; we can see that there are various ports available in it on

which different devices can be mounted and used.

It was first launched in 2012, and from then onwards, various variations of it have been launched. The

original Raspberry Pi had a single-core 700mhz CPU and a 256MB of RAM, but it has evolved a lot since

then; today, we have a quad-core Raspberry Pi with a clock speed of around 1.5Ghz and up to 4GB of RAM.

Surprisingly the cost of Raspberry Pi has always been less than 100 USD. In fact, the Raspberry Pi Zero (an

even low-cost version of regular Raspberry Pi) costs as less as 5 USD. A full-fledged general-purpose CPU

under 5$, that's what the organization's mission is "Aiming to provide people easier and low-cost access to

the computers."

Raspberry Pi is used by people all around the world in learning how to program, build hardware projects,

do home automation, and implement Kubernetes clusters, and it is even getting used in some industrial

applications. Raspberry Pi is a very economical computer that runs Linux Operating System.

Now, let's talk about which specific distribution of Linux Raspberry Pi uses. Raspberry Pi officially

recommends the use of the Raspbian Operating System. It is a Debian-based OS, explicitly made for

Raspberry Pi and hence its name Raspbian.

Raspbian

Raspbian or Raspberry Pi OS is a Linux-based operating system built specifically for Raspberry Pi. It

is packed with all the necessary tools and features that are required for day-to-day use. It will possibly

run on every kind of Raspberry Pi board with a few exceptions, like the Raspberry Pi's pico edition,

because of its far smaller form factor and computing power.

NOOBS

New Out Of the Box Software, or simply NOOBS is an operating system installer for

Raspberry Pi, delivered primarily on an SD card, which contains a variety of operating

systems, out of which we can choose which one we want to install on our Raspberry Pi. It

is made for people who are absolutely new to the Raspberry Pi and do not want to deal with

the complex setting up process of burning an OS image on an SD card. NOOBS is provided

along with every new Raspberry Pi at the time of its purchase.

With NOOBS, the user only needs to connect their Raspberry Pi to a display screen and a

keyboard and then power it up; the NOOBs will boot. There we can select which operating

system we want to install, and NOOBS will install the respective OS on the same SD card

within a few minutes.

