2.3 <u>KERBEROS</u>

- Kerberos is an authentication service developed by MIT and is one of the best known and most widely implemented trusted third party key distribution systems.
- Provides a centralized authentication server whose function is to authenticate users to servers and servers to users.
- Kerberos relies exclusively on symmetric encryption, making no use of public-key encryption.

Kerberos Requirements

Secure: A network eavesdropper should not be able to obtain the necessary information to impersonate a user.

Reliable: Kerberos should be highly reliable and should employ a distributed server architecture, with one system able to back up another.

Transparent: The user should not be aware that authentication is taking place, beyond the requirement to enter a password.

Scalable: The system should be capable of supporting large numbers of clients and servers. This suggests a modular, distributed architecture.

Kerberos is a basic third-party authentication scheme.

Authentication Server (AS)

- Knows the passwords of all users and stores these in a centralized database.
- AS shares a unique secret key with each server.
- These keys have been distributed physically or in some other secure manner
- users initially negotiate with AS to identify self
- AS provides a non-corruptible authentication credential (ticket granting ticket TGT)

Ticket Granting server (TGS)

• issues tickets to users who have been authenticated to AS

• users subsequently request access to other services from TGS on basis of users TGT

Simple Authentication Dialogue

- (1) $C \rightarrow AS: IDC ||PC||IDV$
- (2) AS \rightarrow C: Ticket
- (3) $C \rightarrow V$: IDC||Ticket

```
Ticket = E(K_V, [IDC||ADC||IDV])
```

	03		Where
С	= client	IDV	= identifier of V
AS	= authentication server	PC	= password of user on C
V	=server	ADC	= network address of C
IDC	= identifier of user on C	Kv	= secret encryption key shared by AS
			and V

Drawback of simple authentication dialogue

• The password Pc is transmitted as a simple plain text. So,

there is a possibility of capturing by the attacker.

More secure authentication Dialogue

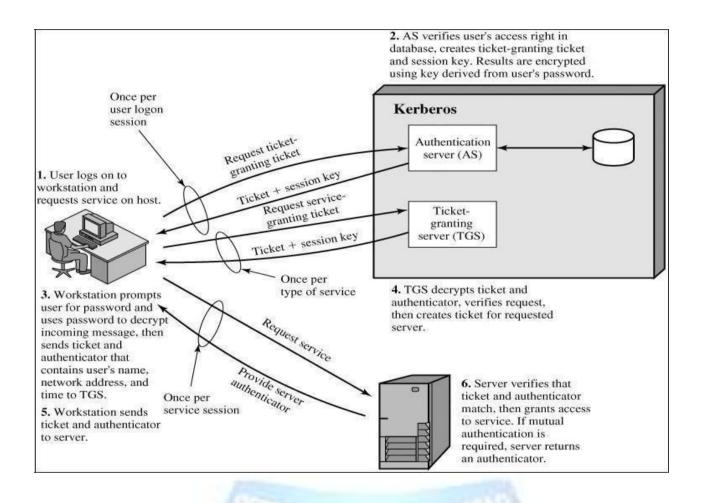
Table: Kerberos Version 4 Message Exchanges

- (1) $C \rightarrow AS$ IDc||IDtgs||TS1
- (2) $AS \rightarrow C$ $E(K_c, [K_c, tgs] || ID_{tgs} || TS_2 || Lifetime_2 || Tickett_{gs}])$ Tickett_{gs} = E(K_{tgs}, [K_c, tgs || ID_c || AD_c || ID_{tgs} || TS_2 || Lifetime_2]

Authentication Service Exchange to obtain ticket-granting ticket

- (3) $C \rightarrow TGS$ $ID_V || Tickettgs || Authenticatorc$
- (4) $TGS \rightarrow C$ $E(K_{c,tgs}, [K_{c,v}||ID_v||TS4||Ticket_v])$ Tickettgs = $E(K_{tgs},$

[Kc,tgs||IDC||ADC||IDtgs||TS2||Lifetime2])

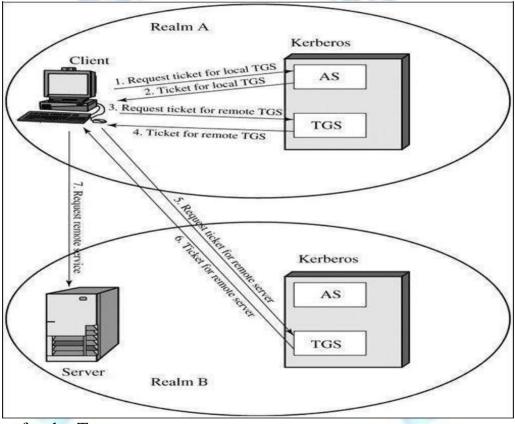

 $Ticket_{V} = E(K_{V}, [K_{C,V} || ID_{C} || AD_{C} || ID_{V} || TS4 || Lifetime4])$

Authenticator_c = $E(K_{c,tgs}, [IDC||ADC||TS3])$

Ticket-Granting Service Exchange to obtain service-granting ticket

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

- (5) $C \rightarrow V$ Ticket_V||Authenticator_C
- (6) $V \rightarrow C$ E(K
 - $E(K_{c,v}, [TS5 + 1])$ (for mutual authentication) $Ticket_v = E(K_v, [K_{c,v}||ID_c||AD_c||ID_v||TS4||Lifetime4])$ $Authenticator_c = E(K_{c,v}, [ID_c||AD_c||TS5])$



Overview of Kerberos

- Client sends a message to the AS requesting access to the TGS.
- AS responds with a message, encrypted with a key derived from the user's password (Kc) that contains the ticket.
- Encrypted message also contains a copy of the session key, Kc,tgs, where the subscripts indicate that this is a session key for C and TGS.
- Session key is inside the message encrypted with Kc, only the user's

client can read it.

- Same session key is included in the ticket, which can be read only by the TGS.
- Thus, the session key has been securely delivered to both C and the TGS.
- Message (1) includes a timestamp, so that the AS knows that the message is timely.
- Message (2) includes several elements of the ticket in a form accessible to C. This enables C to confirm that this ticket is

for the T

Kerberos Realms

Kerberos environment consisting of a Kerberos server, a number of clients, and a number of application servers requires the following:

1. The Kerberos server must have the user ID and hashed

passwords of all participating users in its database. All users are registered with the Kerberos server.

- 2. The Kerberos server must share a secret key with each server. All servers are registered with the Kerberos server.
- 3. The Kerberos server in each interoperating realm shares a secret key with the server in the other realm. The two Kerberos servers are registered with each other.

Such an environment is referred to as a **Kerberos realm**. The concept of *realm* can be explained as follows. A Kerberos realm is a set of managed nodes that share the same Kerberos database.

Kerberos principal, which is a service or user that is known to the Kerberos system. Each Kerberos principal is identified by its principal name. Principal names consist of three parts: a service or user name, an instance name, and a realm name

A user wishing service on a server in another realm needs a ticket for that server. The user's client follows the usual procedures to gain access to the local TGS and then requests a ticket-granting ticket for a remote TGS (TGS in another realm). The client can then apply to the remote TGS for a service-granting ticket for the desired server in the realm of the remote TGS.