Characterization of Distributed Systems
Distributed systems can be characterized by a number of key features, including:

1. Concurrency: In a distributed system, multiple nodes are executing operations concurrently.
This means that the system needs to be able to manage multiple requests and responses

simultaneously, while ensuring that they do not interfere with each other.

2. Communication: Communication between nodes is essential in a distributed system. Nodes
need to be able to send and receive messages to coordinate their activities, exchange data, and

synchronize their state.

3. Heterogeneity: Distributed systems often consist of nodes with different hardware,
software, and network configurations. This heterogeneity can make it difficult to achieve

interoperability and consistency across the system.



1. Client-Server Model: In this model, there is a centralized server that provides services to

2. Peer-to-Peer (P2P) Model: In this model, all nodes in the system are both clients and
servers. Each node can request and provide services to other nodes in the system. P2P

networks are often used for file sharing and distributed computing.

3. Message-Passing Model: In this model, nodes communicate with each other bv passing
messages through a communication channel. The sender of the message does not need to
know the identity or location of the receiver, and vice versa. This model is often used in

distributed computing svstems, such as Hadoop and MapE.educe.

4 Publish-Subscribe Model: In this model, nodes subscribe to topics of interest and receive
messages related to those topics. Publishers send messages to the topics, and the messages
are then distributed to all subscribers. This model is often used in messaging svstems and
event-driven architectures.

4. Scalability: Distributed systems need to be able to handle an increasing number of nodes,
requests, and data volumes. Thev should be able to scale horizontallv, bv adding more

nodes, and verticallv, by increasing the resources available to each node.

5. Fault-tolerance: A distributed svstem should be able to handle node failures and netwaork
partitions without compromising its functionality or data consistency. It should also be able

torecover from failures and restore the svstem to a consistent state.

6. Security: Distributed svstems are vulnerable to securitv threats, such as unauthorized
access, data breaches, and denial-of-service attacks. Thev need to have strong security

mechanisms to protect data integrity, confidentiality, and availability.

7. Decentralization: A distributed svstem is often designed to be decentralized, with no single
point of control or failure. This can increase resilience and reduce the risk of svstem-wide
failures, but it can also make it harder to ensure consistency and coordination across the

system.



