
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

Definition:

 Package can be categorized in two form:
1. Built-in package
2. user-defined package.

Table: List of Built-in Packages

Advantage of Package:

 Package is used to categorize the classes and interfaces so that they can be easily
maintained.

 Package provides access protection.
 Package removes naming collision.
 To bundle classes and interface
 The classes of one package are isolated from the classes of another package
 Provides reusability of code
 We can create our own package or extend already available package

 CREATING USER DEFINED PACKAGES:

Java package created by user to categorize their project's classes and interface
are known as user-defined packages.

 When creating a package, you should choose a name for the package.
 Put a package statement with that name at the top of every source file that

contains the classes and interfaces.

2.10: PACKAGES

A Package can be defined as a collection of classes, interfaces, enumerations and

annotations, providing access protection and name space management.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

 The package statement should be the first line in the source file.
 There can be only one package statement in each source file
 Syntax:

 Steps involved in creating user-defined package:
1. Create a directory which has the same name as the package.
2. Include package statement along with the package name as the first

statement in the program.
3. Write class declarations.
4. Save the file in this directory as “name of class.java”.
5. Compile this file using java compiler.

 Example:

package pack;
public class class1 {
public static void greet()
{ System.out.println(“Hello”); }
}

To create the above package,

1. Create a directory called pack.
2. Open a new file and enter the code given above.
3. Save the file as class1.java in the directory.
4. A package called pack has now been created which contains one class class1.

 ACCESSING A PACKAGE (using “import” keyword):

 The import keyword is used to make the classes and interface of another package
accessible to the current package.

Syntax:

There are three ways to access the package from outside the package.

1. import package.*;
2. import package.classname;
3. fully qualified name.

package package_name.[sub_package_name];
public class classname
{ ……..

……..
}

import package1[.package2][.package3].classname or *;

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

 Using packagename.*

 If you use package.* then all the classes and interfaces of this package will be
accessible but not subpackages.

 Using packagename.classname

 If you import package.classname then only declared class of this package will be
accessible.

 Using fully qualified name

 If you use fully qualified name then only declared class of this package will be
accessible. Now there is no need to import. But you need to use fully qualified
name every time when you are accessing the class or interface.

Example :

greeting.java (create a folder named “pack” in F:\ and save)

package pack;
public class greeting{
public static void greet()
{ System.out.println(“Hello! Good Morning!”); }
}

FactorialClass.java (create a folder named “Factorial” inside F:\pack and save)

package Factorial;
public class FactorialClass
{
public int fact(int a)
{
if(a==1)
return 1;
else
return a*fact(a-1);
}
}

ImportClass.java (save the file in F:\)

import java.lang.*; // using import package.*
import pack.Factorial.FactorialClass; // using import package.subpackage.class;
import java.util.Scanner;
public class ImportClass
{
public static void main(String[] arg)
{
int n;

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

Scanner in=new Scanner(System.in);
System.out.println("Enter a Number: ");

n=in.nextInt();
pack.greeting p1=new pack.greeting(); // using fully qualified name
p1.greet();
FactorialClass fobj=new FactorialClass();
System.out.println("Factorial of "+n+" = "+fobj.fact(n));
System.out.println("Power("+n+",2) = "+Math.pow(n,2));
}
}

Output:

F:\>java ImportClass
Enter a Number:
5
Hello! Good Morning!
Factorial of 5 = 120
Power(5,2) = 25.0

 PACKAGES AND MEMBER ACCESS:

Access level modifiers determine whether other classes can use a particular field or
invoke a particular method.
There are two levels of access control:

 At the top level— public, or package-private (no explicit modifier).
 At the member level—public, private, protected, or package-private (no

explicit modifier).

Top Level access control:

 A class may be declared with the modifier public, in which case that class is visible
to all classes everywhere.

 If a class has no modifier (the default, also known as package-private), it is visible
only within its own package.

Member Level access control:

 public – if a member is declared with public, it is visible and accessible to all
classes everywhere.

 private - The private modifier specifies that the member can only be accessed in
its own class.

 protected - The protected modifier specifies that the member can only be
accessed within its own package and, in addition, by a subclass of its class in
another package.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

The following table shows the access to members permitted by each modifier.

Access Levels

Modifier Class Package Subclass World

public Y Y Y Y

protected Y Y Y N

no modifier Y Y N N

private Y N N N

The following figure shows the four classes in this example and how they are related.

Figure: Classes and Packages of the Example Used to Illustrate Access Levels

The following table shows where the members of the Alpha class are visible for each of
the access modifiers that can be applied to them.

Visibility

Modifier Alpha Beta Alphasub Gamma

public Y Y Y Y

protected Y Y Y N

no modifier Y Y N N

private Y N N N

Example:

Z:\MyPack\FirstClass.java

package MyPack;

public class FirstClass
{

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

public String i="I am public variable";
protected String j="I am protected variable";
private String k="I am private variable";
String r="I dont have any modifier";

}

Z:\MyPack2\SecondClass.java

package MyPack2;
import MyPack.FirstClass;
class SecondClass extends FirstClass {

void method()
{

System.out.println(i); // No Error: Will print "I am public variable".
System.out.println(j); // No Error: Will print “I am protected variable”.
System.out.println(k); // Error: k has private access in FirstClass
System.out.println(r); // Error: r is not public in FirstClass; cannot be accessed

// from outside package
}

public static void main(String arg[])
{

SecondClass obj=new SecondClass();
obj.method();

}
}

Output:

I am public variable
I am protected variable

Exception in thread "main" java.lang.RuntimeException: Uncompilable source code - k
has private access in MyPack.FirstClass

Visibility of the variables i,j,k and r in MyPack2

Accessibility i j k R

Class Y Y Y Y

Package Y Y N N

Subclass Y Y N N

world Y N N N

Table: Accessibility of variables of MyyPack/FirstClass in MyPack2/SecondClass

2.11: INTERFACES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

“interface” is a keyword which is used to achieve full abstraction. Using
interface, we can specify what the class must do but not how it does.

Interfaces are syntactically similar to classes but they lack instance variable and
their methods are declared without body.

Definition:

 Why use Interface?

There are mainly three reasons to use interface. They are given below.

 It is used to achieve fully abstraction.
 By interface, we can support the functionality of multiple inheritance.
 It can be used to achieve loose coupling.
 Writing flexible and maintainable code.
 Declaring methods that one or more classes are expected to implement.

 An interface is similar to a class in the following ways:

 An interface can contain any number of methods.
 An interface is written in a file with a .java extension, with the name of the

interface matching the name of the file.
 The bytecode of an interface appears in a .class file.
 Interfaces appear in packages, and their corresponding bytecode file must be in a

directory structure that matches the package name.

 Defining Interfaces:

An interface is defined much like a class. The keyword “interface” is used to
define an interface.

Syntax to define interface:

An interface is a collection of method definitions (without implementations)

and constant values. It is a blueprint of a class. It has static constants and abstract

methods.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

Where,

Access_specifer : either public or none.

Name: name of an interface can be any valid java identifier.
Variables: They are implicitly public, final and static, meaning that they cannot be

changed by the implementing class. They must be initialized with a constant
value.

Methods: They are implicitly public and abstract, meaning that they must be declared
without body and defined only by the implementing class.

Note: The java compiler adds public
and abstract keywords before the
interface method and public, static
and final keywords before data
members.

 In other words, Interface fields

are public, static and final by
default, and methods are
public and abstract.

 Understanding relationship between classes and interfaces

As shown in the figure given below, a class extends another class, an interface extends
another interface but a class implements an interface.

[access_specifier] interface InterfaceName

{

Datatype VariableName1=value;

Datatype VariableName2=value;

.

.

Datatype VariableNameN=value;

returnType methodName1(parameter_list);

returnType methodName2(parameter_list);

.

.

returnType methodNameN(parameter_list);

}

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

 Implementing Interfaces (“implements” keyword):

 Once an interface has been defined, one or more classes can implement that
interface.

 A class uses the implements keyword to implement an interface.
 The implements keyword appears in the class declaration following the extends

portion of the declaration.

 Syntax:

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

Rules:

1. If a class implements an interface, then it must provide implementation for all the
methods defined within that interface.

2. A class can implement more than one interfaces by separating the interface
names with comma(,).

3. A class can extend only one class, but implement many interfaces.
4. An interface can extend another interface, similarly to the way that a class can

extend another class.
5. If a class does not perform all the behaviors of the interface, the class must

declare itself as abstract.
 Example:

/* File name : Super.java */

interface Super
{

final int x=10;
void print();

}

/* File name : Sub.java */

class Sub implements Super
{

int y=20;
x=100 //ERROR; cannot change modify the value of final variable

// defining the method of interface
public void print()
{

System.out.println(“X = “+x);
System.out.println(“Y = “+y);

}
}
class sample
{

public static void main(String arg[])
{

Sub SubObj=new Sub();
SubObj.print();
Super SupObj=new Sub(); // interface variable referring to class object
SupObj.print();

[access_specifier] class class_name [extends superclassName] implements

interface_name1, interface_name2…

{

//implementation code and code for the method of the interface

}

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

}

}

Output:
$java sample X = 10
Y = 20
X = 10
Y = 20

 The rules for interfaces:

Member variables:

 Can be only public and are by default.
 By default are static and always static
 By default are final and always final

Methods:

 Can be only public and are by default.
 Cannot be static
 Cannot be Final

 When overriding methods defined in interfaces there are several rules to be

followed:
 The signature of the interface method and the same return type or subtype should

be maintained when overriding the methods.
 An implementation class itself can be abstract and if so interface methods need

not be implemented.

 Properties of Interfaces:

1. Interfaces are not classes. So the user can never use the new operator to
instantiate an interface.
Example: interface super {}

X=new Super() // ERROR

2. The interface variables can be declared, even though the interface objects
can’t be constructed.

Super x; // OK

3. An interface variable must refer to an object of a class that implements the
interface.

4. The instanceOf() method can be used to check if an object implements an
interface.

5. A class can extend only one class, but implement many interfaces.
6. An interface can extend another interface, similarly to the way that a class

can extend another class.
7. All the methods in the interface are public and abstract.
8. All the variable in the interface are public, static and final.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

 Extending Interfaces:

 An interface can extend another interface, similarly to the way that a class can
extend another class.

 The extends keyword is used to extend an interface, and the child interface
inherits the methods of the parent interface.

 Syntax:

Rule: When a class implements an interface that inherits another interface it must
provide implementation for all the methods defined within the interface inheritance
chain.
Example:
interface A
{

void method1();
}
/* One interface can extend another interface. B now has two abstract methods */
interface B extends A
{
void method2();
}
// This class must implement all the methods of A and B

class MyClass implements B
{
public void method1() // overriding the method of interface A
{
System.out.println(“—Method from interface: A—“);
}
public void method2() // overriding the method of interface B
{
System.out.println(“—Method from interface: B—“);
}
public void method3() // instance method of class MyClass
{
System.out.println(“—Method of the class : MyClass—“);
}
public static void main(String[] arg)
{
MyClass obj=new MyClass();
Obj.method1();
Obj.method2();
Obj.method3();

[accessspecifier] interface InterfaceName extends interface1, interface2,…..

{

Code for interface

}

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

}
}

Output:

F:\> java MyClass

--Method from Interface: A—
--Method from Interface: B—
--Method of the class: MyClass--

 Difference between Class and Interface:

Class Interface
The class is denoted by a keyword class The interface is denoted by a keyword

Interface
The class contains data members and
methods. but the methods are defined in
the class implementation. thus class
contains an executable code

The interfaces may contain data members
and methods but the methods are not
defined. the interface serves as an outline
for the class

By creating an instance of a class the class
members can be accessed

you cannot create an instance of an
interface

The class can use various access specifiers
like public, private or protected

The interface makes use of only public
access specifier

The members of a class can be constant or
final

The members of interfaces are always
declared as final

 Difference between Abstract class and interface

Abstract Class Interface
Multiple inheritance is not possible; the
class can inherit only one abstract class

Multiple inheritance is possible; The class
can implement more than one interfaces

Members of abstract class can have any
access modifier such as public, private
and protected

Members of interface are public by
default

The methods in abstract class may be
abstract method or concrete method

The methods in interfaces are abstract by
default

The method in abstract class may or may
not have implementation

The methods in interface have no
implementation at all. Only declaration
of the method is given

Java abstract class is extended using the
keyword extends

Java interface can be implemented by
using the keyword implements

The member variables of abstract class
can be non-final

The member variables of interface are
final by default

Abstract classes can have constructors Interfaces do not have any constructor
Only abstract methods need to be
overridden.

All the method of an interface must be
overridden.

Non-abstract methods can be static. Methods cannot be static.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

Example:
public abstract class Shape
{

public abstract void draw();
}

Example:
public interface Drawable
{
void draw();
}

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

Example for Interface :

1. interface Bank
2. {
3. float rateOfInterest();
4. }
5. class SBI implements Bank
6. {
7. public float rateOfInterest()
8. {
9. return 9.15f;
10. }
11. }
12. class PNB implements Bank
13. {
14. public float rateOfInterest()
15. {
16. return 9.7f;
17. }
18. }
19. class TestInterface2
20. {
21. public static void main(String[] args)
22. {
23. Bank b=new SBI();
24. System.out.println("ROI: "+b.rateOfInterest());
25. }
26. }

Output:
 ROI: 9.15

	Definition:
	Table: List of Built-in Packages
	CREATING USER DEFINED PACKAGES:
	 Syntax:
	ACCESSING A PACKAGE (using “import” keyword):
	Syntax:
	 Using packagename.*
	 Using packagename.classname
	 Using fully qualified name
	Example :
	package pack;
	package Factorial;
	p1.greet();
	Output:
	5
	Power(5,2) = 25.0
	Top Level access control:
	Member Level access control:
	Example:
	Z:\MyPack2\SecondClass.java
	Output: (1)
	 An interface is similar to a class in the following ways:
	 Defining Interfaces:
	Syntax to define interface:
	Note: The java compiler adds public and abstract keywords before the interface method and public, static and final keywords before data members.
	 Understanding relationship between classes and interfaces
	 Implementing Interfaces (“implements” keyword):
	 Syntax: (1)
	Rules:
	 Example:
	/* File name : Sub.java */
	Output: (2)
	 The rules for interfaces:
	Methods:
	 When overriding methods defined in interfaces there are several rules to be followed:
	 Properties of Interfaces:
	 Extending Interfaces:
	 Syntax: (2)
	Example: (1)
	Output: (3)
	 Difference between Class and Interface:

