
I. UNCONSTRAINED EXTERNAL PROBLEMS 
Maxima and minima for a function of one variable 

                  [Eg: Newton Raphson method] 

Maxima and minima for a function of two variables 

 

Constrained External problems 

Eg: Lagrangean method 

External problem with equality constraints 

Eg: Lagrangean method 

Constrained external problem with more than one equality constraint 

Eg: Bordered Hessian Matrix 

Constraint external problem with inequality constriants Eg: Kuhn Tucker conditions 

Newton Raphson method: 

Newton Raphson formula is given by  

Xk+1 = xk-
𝑓(𝑥𝑘)

𝑓′(𝑥𝑘)
 ,  k =0,1,2…. 

 

Unconstrained External Problem: 

 

Example: 

Find the stationary points of f(x)= 4x4-x2+5 and determine the nature of the stationary points. 

Solution: 

f(x)= 4x4-x2+5                   --------------(1) 

f’(x)= 16x3-2x                   --------------(2) 

Stationary points are given by f’(x) = 0 

16x3-2x = 0 

2x(8x2-1) =0 

x=0 or 8x2-1 =0 

X=0 or x=±122There are three stationary values 

x=0, x= + 
1

2√2
, x= - 

1

2√2
 

To determine the nature of these values 

f’’(x)= 48x2-2                          -------(3) 

Case(i) : 

Consider x=0 

f’’(0)=-2  from (3) 

UNIT V NON LINEAR PROGRAMMING PROBLEM 
 

Unconstrained external problems - Equality constraints - Lagrangean method - Kuhn – 

Tucker conditions – Simple problems - Jacobian methods  

 



Case(ii):  

Consider x=
1

2√2
 from (3) ---→ f’’(

1

2√2
) = 48𝑋(

1

8
) -2 =4>0 

x=
1

2√2
 minimises f(x)  and the minimum value of f(x) is 

f(
1

2√2
) = 4 X (

1

64
) –(

1

8
) +5 = 

79

16
 

Case(iii): 

Consider  x=−
1

2√2
 

From (3) -----→ f’’(−
1

2√2
) =48X(

1

2
) -2    ; 4>0 

x=−
1

2√2
 also minimizes f(x) and the minimum value f(x) = 

79

16
 

NOTE: 

Stationary values are x=0, x= + 
1

2√2
, x= - 

1

2√2
 

 

Example: 

Determine the maximum and minimum value of the function  f(x) = (3x-4)2 (2x-3)2 

Solution: 

f(x) = (3x-4)2 (2x-3)2    ---------(1) 

f’(x)=u’v+uv’ 

f’(x)=2(3x-4)3(2x-3)2+(3x-4)2X2(2x-3).2 

       =6(3x-4) (2x-3)2+4(3x-4)2 (2x-3) 

       =(3x-4) (2x-3)[6(2x-3)+4(3x-4) 

       =2(3x-4) (2x-3)[6x-9+6x-8] 

       =2(3x-4) (2x-3)(12x-17)       ------------(2) 

Stationary points/ Extreme points 

f’(x)=0 

2(3x-4) (2x-3)(12x-17)=0 

x=
4

3
 ; x = x=

3

2
 ; x=

17

12
 

Nature of stationary points  

f’’(x)=3(2x-3)(24x-34)+2(3x-4)(24x-34)+24(3x-4)(2x-3) --------(3) 

case(i): 

x=
4

3
 ; from(3) 

f’’(x)=3(2. 
4

3
 -3) (24. 

4

3
− 34) + 0 + 0 

         =3(
8−9

3
)(-2) 

         =(-1)(-2) = 2>0 

       x=
4

3
 minimizes f(x) 

from (1) f(
4

3
) = (3.

4

3
− 4)2 (2.

4

3
− 3)2 =0 

case (ii): x=
3

2
 

from (3) f’’(
3

2
) = 0+(3. 

3

2
− 4)(24.

3

2
− 32) + 0 



=2(
9−8

2
)(2); 2>0 

Hence, x=
3

2
 minimizes f(x) 

Case(iii): x=
17

12
 

From (3) f’’(
17

12
) = 0 + 0 + 24(3.

17

12
− 4)(2.

17

12
− 3) 

      =24(
51−48

12
)( 

17−18

6
) 

      =24(
3

12
)(−

1

6
) 

     =-1<0 

Hence x=
17

12
 maximizes f(x) 

From (1) f(
17

12
) = (3.

17

12
− 4)2(2. 

17

12
− 3)2 

  = (
17−16

4
)2 (

17−18

6
)2 

  =
1

576
 

x=
17

12
 ; f(x)= 

1

576
 

 

Stationary Points/Extreme 

Points 

Status f(x) Maxima 

/Minima 

4

3
 

>0 Minimizes 0 Minima 

3

2
 

>0 Minimizes 0 Minima 

17

12
 

< Maximizes 1

576
  Maxima 

 

NEWTON RAPHSON METHOD 
The necessary condition for y=f(x) to have an extremum is f’(x)=0. Solving this equation may 

be very difficult and we should be satisfied with a reasonably approximate value of the roots 

of the equation f’(x)=0. There are many numerical methods for solving f’(x)= 0. One standard 

method studied in earlier semesters in numerical method is Newton Raphson method. 

               If x0 is an initial approximation of a root of f’(x)=0 chosen properly in the vicinity of 

the root α of f’(x)=0, a≤ α ≤b. so as to ensure the convergence of the approximations then the 

Newton Raphson formula is given by  

Xk+1 = xk-
𝑓(𝑥𝑘)

𝑓′(𝑥𝑘)
 ,  k =0,1,2…. 

When the successive iterations xk and xk+1 are approximately equal within a specified degree 

of accuracy then the convergence occur. Newton Raphson may be used to determine the 

extreme value. 



Example:  

By using the Newton-Raphson’s method find the positive root of the quadratic equation 5x2 

+ 11x – 17 = 0 correct to 3 significant figures.  

Solution: 

f(x)= 5x2+11x-17 

f’(x)=10x+11 

f(x1)=f(1)=5*(1)2+11*(1)-17=5+11-17=-1 

f’(x1)=f’(1)=10*(1)+11=21 

x2=x1-
𝑓(𝑥1)

𝑓′∗(𝑥1)
=1-

𝑓(1)

𝑓′(1)
=1-(−

1

21
)=1+

1

21
=1.0476 

x2= 1.0476 

f(x2)=f(1.0476)=5*(1.0476)2+11*(1.0476)-17=0.1133  

f’(x2)=f’(1.0476)=10*(1.0476)+11=10.476+11=21.476 

Checking it by the quadratic formula: 

x=-11±
√112−44∗5∗(−17)

2∗5
 

x=
−11±

10
  √461 

Use the + to get the positive root: 

x=1.0476 

    So we only need one iteration of the Newton-Raphson method to get it to three significant 

figures, for what we had then would have rounded to 1.05. 

 

Example:  

Investigate f(x)= x4-2x2-16x+1 for maxima and minima use Newton-Raphson method to 

determine the extreme value to 3 decimal places. 

Solution: 

f(x)= x4-2x2-16x+1   --------(1) 

f’(x)=4x3-4x-16 

f’(x)=0 gives 

4x3-4x-16=0 

New f(x)= x3-x-4=0    ---------(2) 

          Using Descartes rule of signs there is at most one  positive root and no negative root. The 

other roots are complex. The positive roots lies between 1 and 2 since, 

f’(1)<o and f’(2)>0 

          This is a real root between 1 and 2. Take the initial approximation as ‘x0’ 

 

 x0 = 
1+2

2
 = 1.5 and use the Newton Raphson formula, 

f(x)= x3-x-4=0    ; k =0,1,2…. 

Newton Raphson formula is given by, 

 

Xk+1 = xk-
𝑓(𝑥𝑘)

𝑓′(𝑥𝑘)
 ,  k =0,1,2…. 



xk 
Xk+1 =

(2𝑥𝑘+
3 𝑥𝑘+4)

(3𝑥𝑘−1
2 )

 

x0 1.5 

x1 1.87 

x2 1.80 

x3 1.796 

x4 1.796 

 

The only extreme value is 1.796 correct to is 3 decimal places. Since two consecutive iterations 

agree at k=3,4 f’’(x)= 12x2-4 

Hence, f’’(1.796) = 12(1.796)2 -4>0 

x= 1.796 minimize f(x) 

f(x)=x4-2x2-16x+1 

Min f(x) = (1.796)4-2(1.796)2-16(1.796)+1 

f(x)=-23.783 

 

MAX AND MIN FOR AFUNCTION OF TWO VARIABLES: 

NECESSARY CONDITIONS: 

r= 
∂2z

∂x2                s=
∂2z

𝜕𝑥𝜕𝑦
               t=

∂2z

∂y2 

(i) f attains a maximum at an extreme point (a,b) if rt-s2>0 and r<0 at that point. 

(ii) f attains a minimum of (a,b) if rt-s2>0 and r>0 at that point. 

(iii) f has a saddle point at (a,b) if rt-s2<0. 

(iv) If rt-s2=0 further investigation is required to determine the nature of the extreme point. 

 

STEPS FOR FINDING THE EXTREME OF Z= F(X,Y): 

Step 1: Find  
𝜕𝑧

𝜕𝑥
and 

𝜕𝑧

𝜕𝑦
 

Step 2: Solve  
𝜕𝑧

𝜕𝑦
=0 and 

𝜕𝑧

𝜕𝑦
  =0 

            The solution gives the at the critical points or stationary points of z=f(x,y) 

Step 3: Calculate r,s and t at the critical point. 

Step 4:  

(i) if rt-s2>0 and r<0 then f has a maximum at the critical point. 

(ii) if rt-s2>0 and r<0 then f has a minimum at the critical point. 

(iii) if rt-s2<0 f has neither a maximum nor minimum. It has a saddle point. 

(iv) if rt-s2=0 further investigation is required. 



Example:  

Investigate for maxima, minima and saddle point for the function z=x4+y4-y2-x2+1 

Solution: 

Z= x4+y4-y2-x2+1      ----------------------(1) 
𝜕𝑧

𝜕𝑥
=4x3-2x 

𝜕𝑧

𝜕𝑦
= 4y3-2y 

 
𝜕𝑧

𝜕𝑥
=0 gives, 4x3-2x=0 

i.e 2x(2x2-1)=0 

x=0 or x= ±
1

√2
 

𝜕𝑧

𝜕𝑦
=0 ; 4y3-2y=0 

y=0 or y=±
1

√2
 

r=  
∂2z

∂x2= 12x2-2    ----------------(2) 

t=  
∂2z

∂y2=12y2-2    ----------------(3) 

s=
∂2z

𝜕𝑥𝜕𝑦
  =0  

rt-s2 = (12x2-2)(12y2-2)-0 

rt-s2 =(12x2-2)(12y2-2) 

rt-s2=4(6x2-1)(6y2-1)  -------------(4) 

The extreme or critical points are (0,0) , (0, +
1

√2
),(0,- 

1

√2
), (

1

√2
,0),(- 

1

√2
,0), (

1

√2
,
1

√2
),  

(-
1

√2
,
1

√2
), (−

1

√2
, −

1

√2
) 

 

Case i: 

At(0,0) rt-s2 =4>0  

r=-2<0           from (2) 

Z is maximum at (0,0) and max z=1 

Case ii: 

At(0, 
1

√2
) 

rt-s2 = -4 X 2 = -8<0 

Hence, (0, 
1

√2
) is a saddle point. 

Case iii: 

At(±
1

√2
, ±

1

√2
) 

rt-s2 = 4X3X2 = 16>0 

r=2>0 

Z is minimum at (±
1

√2
, ±

1

√2
) 

Minimum value of z=1. 

 



EQUALITY CONSTRAINTS  
 

CONSTRAINED EXTERNAL PROBLEMS 

Eg: Lagrangean method: 

                  The most common method of solving external problems having continuous 

differentiable objective function as well as constraint functions with respect to the decision 

variables is the Lagrangean multiplier method. 

                  Lagrangean multiplier method can be illustrated by the following simple two 

variable problems with one constraint. 

Maximize or minimize Z= f(x1,x2) 

Subject to g(x1,x2) ≤b 

x1, x2≥0 

 

Step 1: 

The constraint is replaced another function h(x1,x2)such that h(x1,x2)=g(x1,x2) –b=0 

The problem now becomes 

Maximize or minimize Z=f(x1,x2) 

Subject to h(x1,x2)=0 

x1,x2≥0 

 

Step 2: 

The Lagrangean function L can be constructed as 

L(x1,x2,λ) = f(x1,x2)- λh(x1,x2) 

Where λ is called the Lagrangean multiplier a constant. 

For determining whether the solution results in maximization or minimization of the objective 

function find the first n-1 principal minors of the following determinant 

∆n+1=

[
 
 
 
 0

𝜕ℎ

𝜕𝑥1

𝜕ℎ

𝜕𝑥2 

𝜕ℎ

𝜕𝑥𝑛
 

𝜕ℎ

𝜕𝑥1

𝜕2𝑓

𝜕𝑥1
2 − 𝜆

𝜕2ℎ

𝜕𝑥1
2

𝜕2𝑓

𝜕𝑥1𝜕𝑥2
− 𝜆

𝜕2ℎ

𝜕𝑥1𝜕𝑥2
      𝑥1𝜕𝑥2 ⋮

⋯ ]
 
 
 
 

 

LAGRANGEAN METHOD 
Constrained external problem with one equality constraint: 

Example problem: 

Use the Lagrangian method to maximize the function  

f (x; y) = xy  

subject to the constraint  

x + 2y ≤200 

Solution 

L=xy- λ(x+2y-200) 



∂L

∂x
 = y- λ(1) = 0      (1) 

∂L

∂y
 = x- λ(2) = 0      (2) 

∂L

∂λ
 = -(x+2y-200) = 0 

x+2y = 200         (3) 

      λ = y 

2λ=x      λ=x/2 

X=2y 

x-2y = 0   (4) 

Solve 3 and 4 

X=100 

Y=50 

Consider n-1= 2-1 =1 Principal mirror 

Here f= xy 

H= x+2y-200 

So, ∆3=[
0 1 2
1 0 0
2 0 0

] = 0 

 

Constrained external problem with more than one equality constraint: 

The general form of the non linear programming problem having n variables and m 

constraints (n>m) can be taken as  

Optimize Z =f(x) X= (x1,x2,x3….xn) 

Subject to 

h(x)= 0,i=1,2,3…m 

x≥0 

The Lagrangean function can be taken as 

L(x,λ)=f(x)-∑ ℎ𝑖𝜆 ℎ𝑖(𝑥)𝑚
𝑖=1  

Where 𝜆𝑖, i=1,2,3…….. n are lagrangean multiplier 

Assuming that  the functions L(x, 𝜆), f(x) and h’(x) are partially differentiable with respect to x 

and 𝜆. The necessary conditions for optimum solution are 
𝜕𝐿

𝜕𝑥𝑗
=0, j=1,2…n 

𝜕𝐿

𝜕𝜆𝑗
=0, i=1,2,3….m 

The sufficient conditions for the stationary point to be a maximum or minimum are obtained 

by evaluating the principal minors of the ”Bordered Hessian matrix” 

𝐻𝐵=[
𝑂 𝑃
𝑃𝑇 𝑄

]
(𝑚+𝑛)𝑋(𝑚+𝑛)

 

Where O is an maximum null matrix and Q is  
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Q=

[
 
 
 
 
 

𝜕2𝑧

𝜕𝑥1
2

𝜕2𝑧

𝜕𝑥1𝑥2

𝜕2𝑧

𝜕𝑥1𝑥𝑛

𝜕2𝑧

𝜕𝑥2𝑥1    

𝜕2𝑧

𝜕𝑥2
2

𝜕2𝑧

𝜕𝑥2𝑥𝑛

𝜕2𝑧

𝜕𝑥2𝑥𝑛    

𝜕2𝑧

𝜕𝑥𝑛𝑥2    

𝜕2𝑧

𝜕𝑥𝑛
2 ]

 
 
 
 
 

 

 

 

P=(

ℎ1
1(𝑥) ℎ2

1(𝑥) ℎ1
𝑛(𝑥)

ℎ2
2(𝑥) ℎ2

2(𝑥) ℎ1
𝑛(𝑥)

ℎ1
𝑚(𝑥) ℎ2

𝑚(𝑥) ℎ𝑛
𝑚(𝑥)

) 

Let (𝑋∗, 𝜆∗) be the stationary point for the function of L(x,λ) and 𝐻𝐵* be the corresponding 

bordered hessian matrix. The sufficient but not necessary condition for the maxima or minima 

is determined by the signs of the last (n-m) principal minor of  𝐻𝐵* starting with principal 

minor of order of 2m+1. 

Now  

(i) X* maximizes L if the last (n-m) principal minor from an alternate sign pattern with (−1)𝑚+𝑛 

and 

(ii) X* minimizes L if the last (n-m) principal minor from an alternate sign pattern with (−1)𝑚  

(iii)  

Example problem : Solve the non-linear programming problem by Lagrangean multiplier 

method 

Minimize z= x1
2+x2

2+x3
2 

Subject to constraints 

x1+x2+3x3=2 

5x1+2x2+x3=5 

x1,x2,x3 ≥ 0  

Solution: 

Let f(X) = x12+x22+x32, X= (x1,x2,x3) 

h’(X)= x1+x2+3x3-2 

h’’(X)= 5x1+2x2+x3-5 

x1,x2,x3 ≥ 0 

The Lagrangean function  

L(X,λ)= f(X)- λ1 h’(X)- λ2h’’(X) 

L= x12+x22+x32- λ (x1+x2+3x3 -2) – λ2(5x1+2x2+x3-5) 

The stationary point (X*, λ*) is given by the following necessary conditions: 

∂L/∂x1= 2x1- λ1-5 λ2=0                 -----------(1) 

∂L/∂x2= 2x2- λ1-2 λ2=0                 ------------(2) 

∂L/∂x3= 2x2-3λ1- λ2=0                     ------------(3) 

∂L/∂λ1=  -(x1+x2+3x3-2)-0 ------------(4) 

∂L/∂λ2= -(5x1+2x2+x3-5)=0 ------------(5) 

  



from (1)  

x1= (λ1+5 λ2)/2      ------------(6) 

from (2) 

x2= (λ1+2 λ2)/2      ------------(7) 

from (3) 

x3= (3λ1+ λ2)/2      ------------(8) 

Using (7),(8) 

11λ+10 λ2=4    ------------(9) 

11 λ1+33 λ2=11  -------------(10) 

λ2=7/23 

λ1=2/23 

Using bordered hessian matrix n=3, m=2gives n-m=1; For minimization the sign (-1)m=(-1)2 

is + so the solution is  

Min = Z= 0.857, x1= 37/46; x2=8/23; x3=13/46. 

 

KUHN – TUCKER CONDITIONS – SIMPLE PROBLEM 
KUHN TUCKER CONDITIONS – KKT 

Constrained external problem with inequality constraints[KUHN TUCKER CONDITIONS – 

KKT] 

MAXIMIZATION PROBLEM 

Maximize z= f(x) 

Subject to  

g(x)≤  𝑏       ………….(1) 

x≥0, x=(x1,x2,x3……xn) 

Let h(x)= g(x)-b then h(x) ≤0 from (1) 

First the inequality constraint is changed to equality constraint type by introducing a slack 

variable S in the form of S2 to ensure the non – negativity. 

  

Thus the constraint can be expressed as h(x)+S2=0 and the NLPP can be expressed in the form  

Max Z=f(x) 

Subject to  

h(x)+S2=0 

x≥0 

 

Construct the lagrangean function 

L(x,s,𝜆)=f(x)-
𝜕ℎ

𝜕𝑥𝑗
 =0   ------(1)  where j=1,2,3….n 

𝜕𝑙

𝜕𝜆
 = -[h(x)+s2] = 0 --------(2) 

𝜕𝑙

𝜕𝑠
 = -2s𝜆=0            --------(3) 



From (3) we have either s=0 or 𝜆=0  

If s=0 then from (2) we have, h(x) =0 

Either 𝜆=0 or h(x)=0  

Ie, 𝜆 h(x) =0   ----------(4) 

From (2) again we have,  

h(x)= -s2 =-ve 

h(x)≤0    ----------(5) 

Thus the necessary condition is summarized as 
𝜕𝑓

𝜕𝑥𝑗
 -λ

𝜕ℎ

𝜕𝑥𝑗
 =0, j=1,2…n   ------------(I) 

λ h(x)=0    -----(II) 

h(x))≤0   ------(III) 

 λ≥0 

These  necessary conditions are called Kuhn-Tucker or Krush Kuhn Tucker conditions. 

 

MINIMISATION PROBLEM: 

Minimize 

Z=f(x) , x= (x1,x2,x3….xn) 

Subject to g(x) ≥b 

x≥0 

This is rewritten as 

Minimize 

Z=f(x) 

Subject to 

h(x)= g(x)-b≥0 

x≥0 

Introducing slack variablein the form s2 we have the problem as  

Minimize Z=f(x) 

Subject to 

h(x)-s2=0 

Following the analysis similar to the one use the maximization problem Kuhn tucker 

conditions become  
𝜕𝑓

𝜕𝑥𝑗
 -λ

𝜕ℎ

𝜕𝑥𝑗
 =0, j=1,2…n   

λ h(x)=0     

h(x))≤0    

 λ≥0 

For a single  constraint NLPP the Kuhn tucker conditions are also sufficient conditions if  

(i) f(x) is concave and h(x) is concave in the maximization problem and  

(ii) both f(x) and h(x) are concave in the minimization problem. 

 



Example: 

Maximize z= 8x1+10x2-x12-x22 

Subject to  

3x1+2x2≤6 

x1,x2≥0 

Solution: 

Let f(x) =8x1+10x2-x12-x22 

h(x)= 3x1+2x2-6 

Kuhn Tucker conditions for the maximization problem becomes 

f(x)-λ h(x)=0     

λ h(x))≤0     

λ≥0 

that is 8-2x1-3 λ=0   -------(1) 

10-2x2-2 λ=0      -----------(2)  

λ(3x1+2x2-6)=0   ------(3) 

3x1+2x2-6≤0; λ≥0 -----(4) 

Case(i):  

λ=0 

The above equations becomes, 

8-2x1=0   from (1) 

10-2x2 =0    from (2) 

Hence, x1 =4; x2= 5 

This solution is not feasible since, 3x1+2x2 ≠6 when x1 =4; x2= 5 

Case(ii): 

λ≠0 

Then the above equations becomes  

8-2x1-3λ =0    

10-2x2-2λ=0 

3x1-2x2-6=0 

From the above equations  

x1= (8-3λ)/2 ; x2=5- λ 

Using that Max z= 21.3; x1=4/13; x2=33/13 

 



Example: 

Minimize z= 0.3x1
2-2x1+0.4x2

2-2.4x2+0.6x1x2+100 

Subject to 

2x1+x2≥4, x1,x2≥0 

Solution: 

Let f(x)= 0.3x12-2x1+0.4x22-2.4x2+0.6x1x2+100 and h(x)= 2x1+x2-4 

Kuhn Tucker conditions for the minimization problem becomes 

fj(x)-λhj(x)=0     

λ h(x))≤0     

λ≥0 

Thus we have 

0.6 x1-2+0.6x2-2λ=0    ------(1) 

0.8 x1-2.4+0.6x1-λ=0   ------(2)  

λ(2x1+x2-4)=0 ----(3) 

and 2x1+x2-4≥0    ------(4) 

x1,x2≥0, λ≥0     

Case(i):  

λ= 0         

The above equations 1 and 2 becomes 

0.6x1+0.2x2=2 

0.6x2+0.6x1=2.4 

(ie) 3x1+3x2=10 

       3x1+4x2=12 

Hence, x2= 2 and x1=4/3 

But 2x1+x2 =(8/3)+2; 14/3 ≥4  

So the solution is not feasible. 

Case(ii): 

 λ≠ 0         

The Kuhn tucker conditions becomes 

0.6x1+0.6x2=2+2λ 

0.6x1+0.8x2=λ+2.4 

2x2=0.4- λ  

λ=0.4-0.2x2 

from (3) 2x1+x2=4 

x1= -6/7<0; x2=40/7 

This solution is not feasible since, x1<0; The optimal solution is given by case(ii) x1=4/3; x2=2 

So, Zmin is= 0.3X(16/9)-(8/3)+04X4-2.4X2+0.6X(4/3)X2+100 

Zmin= 292/3 

Zmin=97.33 

So the solution is x1=4/3; x2=2 ; Zmin= 97.33 

 



Example: 

Solve the non-linear programming problem by Kuhn-Tucker conditions.  

Minimize f(x) = x12 + x22 + x32 

Subject to 

 g1(X) = 2x1 + x2 – 5 ≤ 0 

 g2(X) = x1 + x2 – 2 ≤ 0 

 g3(X) = 1 - x1 ≤ 0 

 g4(X) = 2 - x2 – 5 ≤ 0 

 g5(X) = – x3 ≤ 0  

Solution: 

The Kuhn-Tucker conditions are : 

1 2 3 4 5( , , , , ) 0       

1 2 3 1 2 3 4 5

2 1 0

1 0 1

( 2 , 2 , 2 ) ( , , , , ) 01 0 0

0 1 0

0 0 1

x x x     

 

 

 

  

 
 

 
   

0
i i
g 

for i = 1 to 5 

  0g X 
 

 

Also, g(X) ≤ 0 

Thus, we now have 

1 2 3 4 5
, , , , 0     

         
From the first condition. 

 

From the second condition, we have 

1 1 2 3
2 2 0x      

   (i) 

2 1 4
2 0x    

   (ii) 

3 2 5
2 0x    

   (iii 

 

From the third condition, we have 

 1 1 2
2 5 0x x   

   (iv) 

 2 1 3
2 0x x   

   (v) 

 3 1
1 0x  

    (vi) 

 



JACOBIAN METHODS 

If U and V are functions of two independent variables x and y then the following determinant 

becomes |

𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦

| is called Jacobian of u and v with respect to x and y, its denoted by 

𝜕(𝑢,𝑣)

𝜕(𝑥,𝑦)
   or J

𝑢,𝑣

𝑥,𝑦
 

Now we are going to see how Jacobian method can be determined. 

 

Example: 

If x= rcosθ, y=rsinθ find 
𝜕(𝑥,𝑦)

𝜕(𝑟,𝜃)
 

Solution: 

Given: 

x=rcosθ                      y=rsinθ 

𝜕𝑥

𝜕𝑟
= cosθ        

𝜕𝑦

𝜕𝑟
=sinθ  

 

𝜕𝑥

𝜕𝜃
= -sinθ      

𝜕𝑦

𝜕𝜃
 =rcosθ 

We know that 
𝜕(𝑥,𝑦)

𝜕(𝑟,𝜃)
 = |

𝜕𝑥

𝜕𝑟

𝜕𝑢

𝜕𝜃
𝜕𝑦

𝜕𝑟

𝜕𝑦

𝜕𝜃

| 

  

                                   =|
𝑐𝑜𝑠𝜃 −𝑟𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑟𝑐𝑜𝑠𝜃

| 

                                  =r(cos2θ+rsin2θ)     [cos2θ+rsin2θ=1] 

                                  =r 

                       
𝜕(𝑥,𝑦)

𝜕(𝑟,𝜃)
 = r 

 



Example: 

If x=acoshϕcosθ, y=asinhϕsinθ; show that 
𝜕(𝑥,𝑦)

𝜕(𝜙,𝜃)
= 

𝑎2

2
[cosh2ϕ-cos2θ] 

Solution: 

x=asinhϕcosϕ, 
𝜕𝑦

𝜕𝜃
= acoshϕsinθ 

𝜕𝑥

𝜕𝜃
=-acoshϕsinθ, 

𝜕𝑦

𝜕𝜃
= asinhϕcosθ 

We know that 
𝜕(𝑥,𝑦)

𝜕(𝜙,𝜃)
= = |

𝜕𝑥

𝜕𝜙

𝜕𝑥

𝜕𝜃

𝜕𝑦

𝜕𝜙

𝜕𝑦

𝜕𝜃

| 

 = |
𝑎𝑠𝑖𝑛ℎ𝜙𝑐𝑜𝑠𝜃 −𝑎𝑐𝑜𝑠ℎ𝜙𝑠𝑖𝑛𝜃
𝑎𝑐𝑜𝑠ℎ𝜙𝑠𝑖𝑛𝜃 𝑎𝑠𝑖𝑛ℎ𝜙𝑐𝑜𝑠𝜃

| 

 =𝑎2sinℎ2ϕsinθcosℎ2θ+𝑎2cosℎ2ϕsin2θ 

 =𝑎2[sinℎ2ϕ(1-sin2θ)+(1+sinh2ϕ)sin2θ] 

                                      =𝑎2[sinℎ2ϕ- sinℎ2ϕsin2θ+sin2θ+ sinℎ2ϕsin2θ] 

                                      =𝑎2[sinℎ2ϕ+ sin2θ] 

 =𝑎2[
𝑐𝑜𝑠ℎ2𝜙−1

2
 +

1−𝑐𝑜𝑠2𝜃

2
] 

 =
𝑎2

2
[cosh2ϕ-cos2θ] 

                          
 𝜕(𝑥,𝑦)

𝜕(𝜙,𝜃)
 = 

𝑎2

2
[cosh2ϕ-cos2θ] 

 

Example: 

 Find the value of jacobian 
𝜕(𝑢,𝑣)

𝜕(𝑥,𝑦)
 where u=x2-y2, v=2xy and x=rcosθ, y=rsinθ 

Solution: 

Given  

u=x2-y2 

v=2xy 

𝜕(𝑢,𝑣)

𝜕(𝑥,𝑦)
= |

𝜕𝑥

𝜕𝑟

𝜕𝑥

𝜕𝜃
𝜕𝑦

𝜕𝑟

𝜕𝑦

𝜕𝜃

| = |
𝑐𝑜𝑠𝜃 −𝑟𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑟𝑐𝑜𝑠𝜃

| 

                           = rcos2𝜃+rsin2𝜃 

                           =r(cos2𝜃+sin2𝜃) 

                           =r 

 

 


