
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3301 DATA STRUCTURES

List ADT

List is the collection of elements in sequential order. In memory we can store the list in two ways.

 Sequential Memory Location - Array

 Pointer or links to associate the elements sequential – Linked List.

THE LIST ADT

List is an ordered set of elements. The general form of the list is

A1 - First element of the list AN - Last element of the list N - Size of the list

If the element at position i is Ai then its successor is Ai+1 and its predecessor is Ai-1.

Various operations performed on List

 create an empty list

 printList () – prints all elements in the list construct a (deep) copy of a list

 find(x) – returns the position of the first occurrence of x

 remove(x) – removes x from the list if present

 insert (x, position) – inserts x into the list at the specified position isEmpty () – returns true if the list has no

elements

 makeEmpty () – removes all elements from the list findKth (int k) – returns the element in the specified

position

LINKED LIST

Definition

A linked list is a collection of data elements called nodes in which the linear representation is given by links from one

node to the next node.

A1, A2, A3, , AN

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3301 DATA STRUCTURES

Reason for Linked List

 Array is a linear collection of data elements in which the elements are stored in consecutive memory

locations.

 While declaring arrays, we have to specify the size of the array, which will restrict the number of elements

that the array can store. For example, if we declare an array as int marks [10], then the array can store a

maximum of 10 data elements but not more than that.

 But what if we are not sure of the number of elements in advance? Moreover, to make efficient use of

memory, the elements must be stored randomly at any location rather than in consecutive locations.

 So, there must be a data structure that removes the restrictions on the maximum number

 of elements and the storage condition to write efficient programs.

Advantages of using linked list

 A linked list does not store its elements in consecutive memory locations and the user can add any number

of elements to it.

 However, unlike an array, a linked list does not allow random access of data. Elements in a linked list can be

accessed only in a sequential manner.

 But like an array, insertions and deletions can be done at any point in the list in a constant time.

Basic Terminologies

 A linked list, in simple terms, is a linear collection of data elements. These data elements are called nodes.

 Linked list is a data structure which in turn can be used to implement other data structures. Thus, it acts as a

building block to implement data structures such as stacks, queues, and their variations.

 A linked list can be perceived as a train or a sequence of nodes in which each node contains one or more

data fields and a pointer to the next node.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3301 DATA STRUCTURES

 Linked lists provide an efficient way of storing related data and perform basic operations such as

insertion, deletion, and updation of information at the cost of extra space required for storing address of the

next node.

 In above figure, we can see a linked list in which every node contains two parts, an integer and a pointer to

the next node.

 The left part of the node which contains data may include a simple data type, an array, or a structure.

 The right part of the node contains a pointer to the next node (or address of the next node in sequence).

 The last node will have no next node connected to it, so it will store a special value called NULL. In above

figure, the NULL pointer is represented by X.

 While programming, we usually define NULL as –1. Hence, a NULL pointer denotes the end of the list.

 Since in a linked list, every node contains a pointer to another node which is of the same type, it is also

called a self-referential data type.

Use of START pointer variable

 Linked lists contain a pointer variable START that stores the address of the first node in the list. We can

traverse the entire list using START which contains the address of the first node; the next part of the first

node in turn stores the address of its succeeding node.

 Using this technique, the individual nodes of the list will form a chain of nodes. If

 START = NULL, then the linked list is empty and contains no nodes.

Sample Linked List code

struct node

{

int data;

struct node *next;

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3301 DATA STRUCTURES

};

Memory representation of Linked List

 Let us see how a linked list is maintained in the memory. In order to form a linked list, we need a structure

called node which has two fields, DATA and NEXT.

 DATA will store the information part and NEXT will store the address of the next node in sequence.

 Consider the below figure, we can see that the variable START is used to store the address of the first node.

 Here, in this example, START = 1, so the first data is stored at address 1, which is H. The corresponding NEXT

stores the address of the next node, which is 4. So, we will look at address 4 to fetch the next data item.

 The second data element obtained from address 4 is E. Again, we see the corresponding NEXT to go to the

next node.

 From the entry in the NEXT, we get the next address, that is 7, and fetch L as the data. We repeat this

procedure until we reach a position where the NEXT entry contains –1 or NULL, as this would denote the end

of the linked list.

 When we traverse DATA and NEXT in this manner, we finally see that the linked list in the above example

stores characters that when put together form the word HELLO.

 Note that in the below figure shows a chunk of memory locations which range from 1 to 10. The shaded

portion contains data for other applications.

 Remember that the nodes of a linked list need not be in consecutive memory locations. In our example, the

nodes for the linked list are stored at addresses 1, 4, 7, 8, and 10.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3301 DATA STRUCTURES

FREE POOL AND AVAIL POINTER VARIABLE

 The computer maintains a list of all free memory cells. This list of available space is called the free

pool.

 We have seen that every linked list has a pointer variable START which stores the address of the first

node of the list. Likewise, for the free pool (which is a linked list of all free memory cells), we have a

pointer variable AVAIL which stores the address of the first free space.

 Let us revisit the memory representation of the linked list storing all the students’ marks in Biology.

 Now, when a new student’s record has to be added, the memory address pointed by AVAIL will be

taken and used to store the desired information.

 After the insertion, the next available free space’s address will be stored in AVAIL.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3301 DATA STRUCTURES

 For example, in the above Figure when the first free memory space is utilized for inserting the

new node, AVAIL will be set to contain address 6.

 This was all about inserting a new node in an already existing linked list. Now, we will discuss

deleting a node or the entire linked list.

 When we delete a particular node from an existing linked list or delete the entire linked list, the

space occupied by it must be given back to the free pool so that the memory can be reused by some

other program that needs memory space.

 The operating system does this task of adding the freed memory to the free pool. The operating

system will perform this operation whenever it finds the CPU idle or whenever the programs are

falling short of memory space.

 The operating system scans through all the memory cells and marks those cells that are being used

by some program.

 Then it collects all the cells which are not being used and adds their address to the free pool, so that

these cells can be reused by other programs. This process is called garbage collection.

