
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

 

CS3391 OBJECT ORIENTED PROGRAMMING  

 
 

 

 

Method Overloading is a feature in Java that allows a class to have more than one 
methods having same name, but with different signatures (Each method must have 
different number of parameters or parameters having different types and orders). 
 
Advantage: 

 Method Overloading increases the readability of the program. 
 Provides the flexibility to use similar method with different parameters. 

Three ways to overload a method 
 

In order to overload a method, the argument lists of the methods must differ in either of 
these: 

 
1. Number of parameters. (Different number of parameters in argument list) 

For example: This is a valid case of overloading 
add(int, int) 
add(int, int, int) 

 
2. Data type of parameters. (Difference in data type of parameters) 

For example: 
add(int, int) 
add(int, float) 

 
3. Sequence of Data type of parameters. 

For example: 
add(int, float) 
add(float, int) 

Rules for Method Overloading: 
 

1. First and important rule to overload a method in java is to change method 
signature. 

2. Return type of method is never part of method signature, so only changing the 
return type of method does not amount to method overloading. 

 
Example: To find the Minimum of given numbers: 

public class OverloadingCalculation1 
{ 

public static void main(String[] args) 
{ 

int a = 11; 
int b = 6; 
int c = 3; 
double x = 7.3; 
double y = 9.4; 

2.1: Overloading Methods 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

 

CS3391 OBJECT ORIENTED PROGRAMMING  

 
 
 
int result1 = minFunction(a, b, c); 
double result2 = minFunction(x, y); 
double result3 = minFunction(a, x); 
System.out.println("Minimum("+a+","+b+","+c+") = " + result1); 
System.out.println("Minimum("+x+","+y+") = " + result2); 
System.out.println("Minimum("+a+","+x+") = " + result3); 

} 
 

public static int minFunction(int n1, int n2, int n3) 
{ 

int min; 
int temp = n1<n2? n1 : n2; 
min = n3 < temp? n3 : temp; 
return min; 

} 
 

public static double minFunction(double n1, double n2) 
{ 

double min; 
if (n1 > n2) 

min = n2; 
else 

min = n1; 
 

return min; 
} 

public static double minFunction(int n1, double n2) 
{ 

double min; 
if (n1 > n2) 

min = n2; 
else 

min = n1; 
 

return min; 
} 

} 

This would produce the following result: 
Minimum(11,6,3) = 3 
Minimum(7.3,9.4) = 7.3 
Minimum(11,7.3) = 7.3 

 
Note:- 

Method overloading is not possible by changing the return type of the method 
because of ambiguity that may arise while calling the method with same 
parameter list with different return type. 

 
 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

 

CS3391 OBJECT ORIENTED PROGRAMMING  

 
Example: 

 
class Add 
{ 

static int sum(int a, int b) 
{ 

return a+b; 
} 
static float sum(int a, int b) 

{ 
return a+b; 

} 
public static void main(String arg[]) 
{ 

System.out.println(sum(10,20)); 
System.out.println(sum(15,25)); 

} 
} 

 

Output: 

Compile by: javac TestOverloading3.java 

 
Add.java:7: error: method sum(int,int) is already defined in class Add 
static float sum(int a, int b) 
^ 

1 error 

 

 
Method Overloading and Type Promotion 

Type Promotion: When a data type of smaller size is promoted to the data type of 
bigger size than this is called type promotion, for example: byte data type can be 
promoted to short, a short data type can be promoted to int, long, double etc. 

 
Type Promotion in Method Overloading: 

One type is promoted to another implicitly if no matching data type is found. 
 
Type Promotion Table: 

The data type on the left side can be promoted to the any of the data type present 
in the right side of it. 

 

 

byte → short → int → long → double 

short → int → long → float → double 

int → long → float → double 

float → double 

long → float → double 

char → int → long → float → double 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

 

CS3391 OBJECT ORIENTED PROGRAMMING  

 

Example: Method Overloading with Type Promotion: 
 

class Overloading 
{ 

void sum(int a, float b) 
{ 

System.out.println(a+b); 
} 

void sum(int a, int b, int c) 
{ 

System.out.println(a+b+c); 
} 

public static void main(String args[]) 
{ 

OverloadingCalculation1 obj=new OverloadingCalculation1(); 
obj.sum(20,20); //now second int literal will be promoted to float 

obj.sum(100,'A'); //Character literal will be promoted to float 

obj.sum(20,20,20); 
} 

} 

OUTPUT: 
 

40.0 
165.0 
60 

 
 

Java is strictly pass-by-value. But the scenario may change when the parameter passed 
is of primitive type or reference type. 

 If we pass a primitive type to a method, then it is called pass-by-value or call-by- 
value. 

 If we pass an object to a method, then it is called pass-by-reference or call-by- 
reference. 

Object as a parameter is a way to establish communication between two or more 
objects of the same class or different class as well. 

 
 

2.2: Objects as Parameters 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

 

CS3391 OBJECT ORIENTED PROGRAMMING  

 
 
Pass-by-value vs. Pass-by-reference: 

Pass-by-value (Value as parameter) Pass-by-reference (Object as parameter) 

Only values are passed to the function 
parameters. So any modifications done in 
the formal parameter will not affect the 
value of actual parameter 

Reference to the object is passed. So any 
modifications done through the object will 
affect the actual object. 

Caller and Callee method will have two 

independent variables with same value. 

Caller and Callee methods use the same 

reference for the object. 

Callee method will not have any access to 

the actual parameter 

Callee method will have the direct 

reference to the actual object 

Requires more memory Requires less memory 

  
class CallByVal 

{ 

void Increment(int count) 

{ 

count=count+10; 

} 

} 

public class CallByValueDemo { 
public static void main(String arg[]) 
{ 

CallByVal ob1=new CallByVal(); 
int count=100; 
System.out.println("Value of Count before 

method call = "+count); 

class CallByRef 

{ 

int count=0; 
CallByRef(int c) 

{ 

count=c; 

} 

static void Increment(CallByRef obj) { 
obj.count=obj.count+10; 

} 

 
public static void main(String arg[]) { 

CallByRef ob1=new CallByRef(10); 
System.out.println("Value of Count (Object 1) before 

ob1.Increment(count); 

System.out.println("Value of Count after 

method call = "+count); 

} 

} 

 
OUTPUT: 

 
Value of Count before method call = 100 
Value of Count after method call = 100 

method call = "+ob1.count); 

Increment(ob1); 

System.out.println("Value of Count (Object 1) after 

method call = "+ob1.count); 

 
} } 

OUTPUT: 

Value of Count (Object 1) before method call = 10 
Value of Count (Object 1) after method call = 20 

Returning Objects: 

In Java, a method can return any type of data. Return type may any primitive data type 
or class type (i.e. object). As a method takes objects as parameters, it can also return 
objects as return value. 

 Example: 
class Add 
{ 

int num1,num2,sum; 
static Add calculateSum(Add a1,Add a2) 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

 

CS3391 OBJECT ORIENTED PROGRAMMING  

{ 
 
 
 
 
Add a3=new Add(); 
a3.num1=a1.num1+a1.num2; 
a3.num2=a2.num1+a2.num2; 
a3.sum=a3.num1+a3.num2; 
return a3; 

} 
public static void main(String arg[]) 
{ 

Add ob1=new Add(); 
ob1.num1=10; 
ob1.num2=15; 
Add ob2=new Add(); 
ob2.num1=100; 
ob2.num2=150; 
Add ob3=calculateSum(ob1,ob2); 
System.out.println("Object 1 -> Sum = "+ob1.sum); 
System.out.println("Object 2 -> Sum = "+ob2.sum); 
System.out.println("Object 3 -> Sum = "+ob3.sum); 

} 
} 

OUTPUT: 
 

Object 1 -> Sum = 0 
Object 2 -> Sum = 0 
Object 3 -> Sum = 275 

 
 


	Advantage:
	Three ways to overload a method
	1. Number of parameters. (Different number of parameters in argument list)
	2. Data type of parameters. (Difference in data type of parameters)
	3. Sequence of Data type of parameters.
	Rules for Method Overloading:
	Example: To find the Minimum of given numbers:
	This would produce the following result:
	Note:-
	Example:
	Output:
	Type Promotion in Method Overloading:
	Type Promotion Table:
	Example: Method Overloading with Type Promotion:
	OUTPUT:
	Pass-by-value vs. Pass-by-reference:
	Returning Objects:
	OUTPUT: (1)

