
CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

 Coupling and Cohesion

Module Coupling

In software engineering, the coupling is the degree of interdependence between software modules. Two

modules that are tightly coupled are strongly dependent on each other. However, two modules that are

loosely coupled are not dependent on each other. Uncoupled modules have no interdependence at all

within them.

The various types of coupling techniques are shown in fig:

A good design is the one that has low coupling. Coupling is measured by the number of relations between

the modules. That is, the coupling increases as the number of calls between modules increase or the amount

of shared data is large. Thus, it can be said that a design with high coupling will have more errors.

Types of Module Coupling

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

1. No Direct Coupling: There is no direct coupling between M1 and M2

In this case, modules are subordinates to different modules. Therefore, no direct coupling.

2. Data Coupling: When data of one module is passed to another module, this is called data coupling.

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

3. Stamp Coupling: Two modules are stamp coupled if they communicate using composite data items such

as structure, objects, etc. When the module passes non-global data structure or entire structure to another

module, they are said to be stamp coupled. For example, passing structure variable in C or object in C++

language to a module.

4. Control Coupling: Control Coupling exists among two modules if data from one module is used to direct

the structure of instruction execution in another.

5. External Coupling: External Coupling arises when two modules share an externally imposed data format,

communication protocols, or device interface. This is related to communication to external tools and devices.

6. Common Coupling: Two modules are common coupled if they share information through some global

data items.

7. Content Coupling: Content Coupling exists among two modules if they share code, e.g., a branch from

one module into another module.

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

Module Cohesion

In computer programming, cohesion defines to the degree to which the elements of a module belong

together. Thus, cohesion measures the strength of relationships between pieces of functionality within a

given module. For example, in highly cohesive systems, functionality is strongly related.

Cohesion is an ordinal type of measurement and is generally described as "high cohesion" or "low cohesion."

Types of Modules Cohesion

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

1. Functional Cohesion: Functional Cohesion is said to exist if the different elements of a module,

cooperate to achieve a single function.

2. Sequential Cohesion: A module is said to possess sequential cohesion if the element of a module

form the components of the sequence, where the output from one component of the sequence is

input to the next.

3. Communicational Cohesion: A module is said to have communicational cohesion, if all tasks of the

module refer to or update the same data structure, e.g., the set of functions defined on an array or a

stack.

4. Procedural Cohesion: A module is said to be procedural cohesion if the set of purpose of the module

are all parts of a procedure in which particular sequence of steps has to be carried out for achieving a

goal, e.g., the algorithm for decoding a message.

5. Temporal Cohesion: When a module includes functions that are associated by the fact that all the

methods must be executed in the same time, the module is said to exhibit temporal cohesion.

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

6. Logical Cohesion: A module is said to be logically cohesive if all the elements of the module perform

a similar operation. For example Error handling, data input and data output, etc.

7. Coincidental Cohesion: A module is said to have coincidental cohesion if it performs a set of tasks

that are associated with each other very loosely, if at all.

Differentiate between Coupling and Cohesion

Coupling Cohesion

Coupling is also called Inter-Module

Binding.

Cohesion is also called Intra-Module Binding.

Coupling shows the relationships between

modules.

Cohesion shows the relationship within the module.

Coupling shows the

relative independence between the

modules.

Cohesion shows the module's

relative functional strength.

While creating, you should aim for low

coupling, i.e., dependency among modules

should be less.

While creating you should aim for high cohesion, i.e., a

cohesive component/ module focuses on a single

function (i.e., single-mindedness) with little interaction

with other modules of the system.

In coupling, modules are linked to the

other modules.

In cohesion, the module focuses on a single thing.

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

FUNCTIONAL INDEPENDENCE IN SOFTWARE ENGINEERING

Functional independence in software engineering means that when a module focuses
on a single task, it should be able to accomplish it with very little interaction with other
modules.

In software engineering, if a module is functionally independent of other module
then it means it has high cohesion and low coupling.

Functional independence is essential for good software design.

Example of functional independence
We will take an example of simple college level project to explain concept of functional

independence.

Suppose you and your friends are asked to work on a calculator project as a team.
Here we need to develop each calculator functionality in form of modules taking two
user inputs.

So our modules are addition Module, subtraction Module, division Module,
multiplication Module. Each one of you pick up one module for development purpose.

Before you enter into development phase, you and your team needs to make sure to
design the project in such a way that each of the module that you develop individually
should be able to perform its assigned task without requiring much or no interaction
with your friends module.
 What I intend to say is, if you are working on addition Module then your module
should be able to independently perform addition operation on receiving user input. It
should not require to make any interaction with other modules like subtraction Module,
multiplication Module or etc.

This is actually the concept of having module as functional independence of other
modules. There is an advantage of functional independence in software engineering which we
are going to discuss next.

Advantage of functional independence

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

Advantages of functional independence are given below:
Error isolation
When a module is functionally independent then it performs most of its task
independently without interacting with other modules much. This reduces the chances
of error getting propagated to other modules. This helps in easily isolating and tracing
the error.

Module reusability
A functionally independent module performs some well defined and specific task. So it
becomes easy to reuse such modules in different program requiring same
functionality.

Understandability
A functionally independent module is less complex so easy to understand. Since such
modules are less interaction with other modules so can be understood in isolation.

	Coupling and Cohesion
	Module Coupling
	Types of Module Coupling

	Module Cohesion
	Types of Modules Cohesion

	Differentiate between Coupling and Cohesion
	FUNCTIONAL INDEPENDENCE IN SOFTWARE ENGINEERING
	Advantage of functional independence

