1.6 The Predicate Calculus

The predicate calculus deals with the study of predicates.

Consider the following statement.

"Ram is a boy"

In the above statement, "is a boy" is the predicate and the name "Ram" is the subject.

If we denote "is a boy" by B and subject "Ram" by r, then the statement "Ram is a boy" can be represented as B(r).

Some examples

1." *x* is a man"

Here, Predicate is "is a man" and it is denoted by M. Subject is "x" and it is denoted by x.

Hence the given statement "x is a man" can be denoted by M(x).

2. "Sam is poor and Ram is intelligent"

The statement "Sam is poor" can be represented by P(s) where P represents predicate "is poor" and s represents subject "Sam"

The statement "Ram is intelligent" can be represented by I(r) where I represents predicate "is intelligent" and r represents subject "Ram".

Hence the given statement "Sam is poor and Ram is intelligent" can be symbolized as $P(s) \wedge I(r)$.

The Theory of Inference for Predicate Calculus

Universal Specification (UG): $A(y) \Rightarrow (x)A(x)$

Existential Generalization (EG): $A(y) \Rightarrow (\exists x)A(x)$

Universal Specification (US): $(x)A(x) \Rightarrow A(y)$

Existential Specification (ES): $(\exists x)A(x) \Rightarrow A(y)$

Problems:

1. Show that $(x)(H(x) \rightarrow M(x)) \land H(s) \Rightarrow M(s)$

Solution:

	7 YUSEDUR	courtbuller
{1}	$1) (x) (H(x) \to M(x))$	Rule P
{1}	$2)H(s)\to M(s)$	Rule US
{3}	3 H(s)	Rule P
{1,3}	4)M(s)	Rule T $(P, P \to Q \Rightarrow Q)$

2. Show that
$$(x)(P(x) \to Q(x)) \land (x)(Q(x) \to R(x)) \Rightarrow (x)(P(x) \to R(x))$$

Solution:

{1}	$1) (x) (P(x) \to Q(x))$	Rule P
{1}	$2)P(y) \rightarrow Q(y)$ NGI	Rule US
{3}	$3(x)(Q(x)\to R(x))$	Rule P
{1,3}	$4)Q(y) \rightarrow R(y)$	Rule US
{1,3}	$5) P(y) \to R(y)$	Rule T $(P \to Q, Q \to R \Rightarrow P \to R)$
{1,3}	$6)(x)(P(x) \to R(x))$	Rule UG

3. Show that $(\exists x)(P(x) \land Q(x)) \Rightarrow (\exists x)P(x) \land (\exists x)Q(x)$

Solution:

{1}	1) $(\exists x)(P(x) \land Q(x))^{-1}$	Rule P
{1}	$2)P(y) \wedge Q(y)$	Rule ES
{3}	3 P(y)	Rule T $(P \land Q \Rightarrow P)$
{1,3}	4)Q(y)	Rule T $(P \land Q \Rightarrow P)$
{1,3}	$5) (\exists x) P(x)$	Rule EG
{1,3}	$6)(\exists x)Q(x)$	Rule EG
{1}	$7)(\exists x)P(x) \wedge (\exists x)Q(x)$	Rule $T(P, Q \Rightarrow P \land Q)$

4.Show that $(x)(P(x) \lor Q(x)) \Rightarrow (x)P(x) \lor (\exists x)Q(x)$

Solution:

We shall use the indirect method of proof.

Assume $\neg ((x)P(x) \lor (\exists x)Q(x))$ as an additional premises.

		// \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
{1}	1) $\neg ((x)P(x) \lor (\exists x)Q(x))$	Assumed Premises
{1}	2) $(\exists x) \neg P(x) \land (x)Q(x)$	Rule T (D'Morgan's law)
{1}	3) $(\exists x) \neg P(x)$	Rule T $(P \land Q \Rightarrow P)$
{1}	4) (x)Q(x)	Rule T $(P \land Q \Rightarrow P)$
{1}	$5) \neg P(y)$	Rule ES
{1}	$ 6 \rangle \neg Q(y)$	Rule US
{1}	7) $\neg P(y) \land \neg Q(y)$ $ESERVE OPTIMIZE OUTSP$	Rule $T(P, Q \Rightarrow P \land Q)$
{1}	$8) \neg (P(y) \lor Q(y))$	Rule T (D'Morgan's law)
{1}	9) $(x)(P(x) \vee Q(x))$	Rule P
{1}	$10) P(y) \vee Q(y)$	Rule US
{1}	11) $(P(y) \lor Q(y)) \land \neg (P(y) \lor Q(y))$	Rule $T(P, Q \Rightarrow P \land Q)$

which is nothing but false value.

5. Show that
$$(x)(P(x) \rightarrow Q(x)) \Rightarrow (x)P(x) \rightarrow (x)Q(x)$$

Solution:

Assume
$$\neg((x)P(x) \rightarrow (x)Q(x))$$
 GINEER/VG

{1}	$1) \neg ((x)P(x) \rightarrow (x)Q(x))$	Assumed Premises
{1}	$2) (x)P(x) \wedge \neg (x)Q(x)$	Rule T $(P \to Q \Rightarrow \neg P \lor Q)$
{1}	3) (x)P(x)	Rule T $(P \land Q \Rightarrow P)$
{1}	$4) \neg ((x)Q(x))$	Rule T $(P \land Q \Rightarrow P)$
{1}	5) $(\exists x) \neg Q(x)$	Rule T(Taking ¬)
{1}	6) P(y)	Rule US
{1}	7) $\neg Q(y)$	Rule ES
{1}	8) $P(y) \land \neg Q(y)$	Rule T $(P, Q \Rightarrow P \land Q)$
{9}	$9) \neg (P(y) \rightarrow Q(y))$	Rule $T((P \land \neg Q) \Leftrightarrow \neg(P \rightarrow Q))$
{9}	$10) (\exists x) \neg (P(x) \to Q(x))$	Rule EG
{1,9}	$11) \neg ((x)P(x) \rightarrow Q(x))$	Rule T(Taking ¬)