
Rohini College of Engineering & Technology Department of ECE

Middleware architecture of SCADA

The concept of MAN (M2M area network) was introduced in 3GPP/ETSI’s MTC

(Machine Type Communication) specification. This concept also applies to other

pillar segments of IoT. However, not all IoT applications will use a cellular network.

In fact, most of the traditional SCADA (Supervisory Control And Data Acquisition)

applications have been using local wireline networks for communications. The

remote terminal units (RTUs), programmable logic controllers (PLCs), or even

process control systems (PCSs) communicate to the SCADA middleware server via

gateways (similar to MAN but all wired) that aggregate data from different wired

field buses. The SCADA system is accessed in a LAN environment (sometimes

xDSL, cable, WiFi, or WiMax can be used) before it is integrated into the corporate

back office system.

Figure 2.6 depicts the role of SCADA middleware in such a scenario in more detail.

Companies providing such SCADA middleware products include the following:

Central Data Control: CDC provides the software platform Integra, which utilizes

data agents to translate protocols from different building system components into

single management system.

Elutions: Its Control Maestro product has a SCADA heritage. SCADA may be best

known for industrial processes but is also deployed for infrastructure (water

treatment plants, gas pipelines, etc.) as well as facility systems. Control Maestro is

web-based, uses human–machine interfaces (HMI), and is able to deliver real-time

and historical information.

Rohini College of Engineering & Technology Department of ECE

Richards Zeta: RZ’s middleware solution is a combination of system controllers and

software.

Tridium: It provides the Niagara Java-based middleware framework and JACE

hardware controllers. The Niagara platform provides protocol translation for a range

of systems and the tools to build applications

Fig.2.8 SCADA middleware architecture

 [Ref: Honbo Zhou, “Internet of Things in the cloud: A middleware perspective”,

CRC press, 2012]

Rohini College of Engineering & Technology Department of ECE

With the development of wireless technologies, systems have been developed that

blend wireless with wired communication in SCADA applications. SensiLinkTM is a

middleware and software suite from MeshNetics that links wireless sensor networks

with SCADA systems. Sensor data collected from the nodes is channeled through

RS232, RS485, USB, Ethernet, or GPRS gateway to the SensiLink server.

RFID Middleware:

RFID networking shares a similar three-tiered communication architecture as shown

in Figure 2.9. RFID readers are the gateways similar to MAN. Data from the readers

go to the corporate LAN and then are transmitted to the Internet as needed. However,

just like the scenarios of M2M and SCADA, most current RFID systems stop at the

corporate LAN level and are IoT systems only.

RFID middleware (including the edge middleware or edge ware) is currently

no doubt the most well-defined, comprehensive, standardized middleware compared

with the other three pillar segments of IoT. Before 2004, an RFID middleware-based

system was defined by EPC global, which included:

Rohini College of Engineering & Technology Department of ECE

Fig.2.9 RFID architecture

 [Ref: Quan Z. Sheng et.al, “RFID Data Management: Issues, Solutions, and

Directions,” in Lu Yan, Yan Zhang, Laurence T. Yang, and Huansheng Ning

(Eds.), The Internet of Things: From RFID to the Next-Generation Pervasive

Networked Systems, New York: Auerbach Publications, 2008.)

• A format for the data called physical markup language (PML), based on XML

• An interface to the servers containing PML records

• A directory service called ONS (object naming service), analogous to the

DNS. Given a tag’s EPC, the ONS will provide pointers to the PML servers

containing records related to that tag.

An example of commercial RFID middleware product is IBM’s WebSphere Sensor

Events. WebSphere Sensor Events delivers new and enhanced capabilities to create

a robust, flexible,

and scalable platform for capturing new business value from sensor data. WebSphere

Sensor Events is the platform for integrating new sensor data, identifying the

relevant business events from that data using situational event processing, and then

integrating and acting upon those events with SOA business processes.

WSN Middleware

WSN middleware is a kind of middleware providing the desired services for sensor-

based pervasive computing applications that make use of a WSN and the related

embedded operating system or firmware of the sensor nodes. In most cases, WSN

middleware is implemented as embedded middleware on the node. It should be noted

that while most existing distributed system middleware techniques aim at providing

Rohini College of Engineering & Technology Department of ECE

transparency abstractions by hiding the context information, WSN-based

applications are usually required to be context aware.

A complete WSN middleware solution should include four major

components: programming abstractions, system services, runtime support, and

quality of service (QoS) mechanisms. Programming abstractions define the interface

of the middleware to the application programmer. System services provide

implementations to achieve the abstractions. Runtime support serves

as an extension of the embedded operating system to support the middleware

services. QoS mechanisms define the QoS constraints of the system. The system

architecture of WSN middleware is shown in Figure 2.10.

Middleware for WSN should also facilitate development, maintenance, deployment,

and execution of sensing-based applications. Many challenges arise in designing

middleware for WSN due to the following reasons:

• Limited power and resources, e.g., battery issues

• Mobile and dynamic network topology

• Heterogeneity, various kinds of hardware and network protocols

• Dynamic network organization, ad-hoc capability

Rohini College of Engineering & Technology Department of ECE

Fig.2.10 WSN middleware architecture

 [Ref: Honbo Zhou, “Internet of Things in the cloud: A middleware perspective”,

CRC press, 2012]

WSN middleware is designed using a number of approaches such as virtual machine,

mobile agents, database based, message-oriented, and more. The WSN middleware

is considered to be “proactive” middleware in the middleware family. Example

middleware are as follows:

MagnetOS : power-aware, adaptive; the whole network appears as a single JVM,

standard Java programs are rewritten by MAGNET as network components, and

components may then be “injected” into the network using a power-optimized

scheme.

IMPALA: modular; efficiency of updates and support dynamic applications;

application adaption with different profiles possible; energy efficient; used in the

ZebraNet project for wildlife monitoring.

Rohini College of Engineering & Technology Department of ECE

Cougar: represents all sensors and sensor data in a relational database; control of

sensors and extracting data occurs through special SQL-like queries; decentralized

implementation; message passing based on controlled flooding.

SINA (system information networking architecture): based on a spreadsheet

database wherein the network is a collection of data sheets and cells are attributes;

attribute-based naming; queries performed in an SQL-like language; decentralized

implementation based on clustering.

MQTT-S (Message Queue Telemetry Transport for Sensors, IBM): a

publish/subscribe messaging protocol for WSN, with the aim of extending the

MQTT protocol beyond the reach of TCP/IP infrastructures (non-TCP/ IP networks,

such as Zigbee) for sensor and actuator solutions; a commercial product.

MiLAN: This provides a mechanism that allows for the adaptation of different

routing protocols; sits on top of multiple physical networks; acts as a layer that

allows network-specific plug-ins

to convert MiLAN commands to protocol-specific ones that are passed through the

usual

network protocol stack; can continuously adapt to the specific features of whichever

network is being used in the communication.

