COEFFICIENT QUANTIZATION ERROR

Co-efficient quantization error

- We know that the IIR Filter is characterized by the system function

$$
H(Z)=\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{1+\sum_{k=1}^{N} a_{k} z^{-k}}
$$

- After quantizing,
$[H(Z)]_{q}=\frac{\sum_{k=0}^{M}\left[b_{k}\right]_{q} z^{-k}}{1+\sum_{k=1}^{N}\left[a_{k}\right]_{q} z^{-k}}$
Where

$$
\begin{aligned}
& {\left[a_{k}\right]_{q}=a_{k}+\Delta a_{k}} \\
& {\left[b_{k}\right]_{q}=b_{k}+\Delta b_{k}}
\end{aligned}
$$

- The quantization of filter coefficients alters the positions of the poles and zeros in z-plane.

1. If the poles of desired filter lie close to the unit circle, then the quantized filter poles may lie outside the unit circle leading into instability of filter.
2. Deviation in poles and zeros also lead to deviation in frequency response.
$* *$
Consider a second order IIR filter with $H(z)=\frac{1.0}{\left(1-0.5 z^{-1}\right)\left(1-0.45 z^{-1}\right)}$
on pole locations of the given system function in direct form and in cascade form. Take $b=3 b i t s$.
[Apr/May-10] [Nov/Dec-11]

Solution:

Given that,
$H(z)=\frac{1.0}{\left(1-0.5 z^{-1}\right)\left(1-0.45 z^{-1}\right)}$

$$
\begin{aligned}
H(z) & =\frac{1}{z^{-1}\left(z-0.5 z^{-1}\right) z^{-1}(z-0.5)} \\
& =\frac{z^{2}}{(z-0.5)(z-0.45)}
\end{aligned}
$$

The roots of the denominator of $\mathrm{H}(\mathrm{z})$ are the original poles of $\mathrm{H}(\mathrm{z})$. let the original poles of $\mathrm{H}(\mathrm{z})$ be p_{1} and p_{2}.
Here $p_{1}=0.5$ and $p_{2}=0.45$

Direct form I:

$H(z)=\frac{1.0}{\left(1-0.5 z^{-1}\right)\left(1-0.45 z^{-1}\right)}$

$$
\begin{aligned}
H(z) & =\frac{1}{1-0.5 z^{-1}-0.45 z^{-1}+0.225 z-2} \\
& =\frac{1}{1-0.95 z^{-1}+0.225 z^{-2}}
\end{aligned}
$$

Let us quantize the coefficients by truncation.

Let $\bar{H}(z)$ be the transfer function of the IIR system after quantizing the coefficients.
$\bar{H}(z)=\frac{1}{1-0.875 z^{-1}+0.125 z^{-2}}$
let $\bar{H}(z)=\frac{Y(z)}{X(z)}=\frac{1}{1-0.875 z^{-1}+0.125 z^{-2}}$
On cross multiplying the above equation we get,
$Y(z)-0.875 z^{-1} Y(z)+0.125 z^{-2} Y(z)=X(z)$
$Y(z)=X(z)+0.875 z^{-1} Y(z)-0.125 z^{-2} Y(z)$

Cascade form:

Given that
$H(z)=\frac{1.0}{\left(1-0.5 z^{-1}\right)\left(1-0.45 z^{-1}\right)}$
In cascade realization the system can be realized as cascade of first order sections.
$\mathrm{H}(\mathrm{z})=\mathrm{H}_{1}(\mathrm{z})+\mathrm{H}_{2}(\mathrm{z})$
Where,
$H_{1}(\mathrm{z})=\frac{1}{1-0.5 z^{-1}}$ and $H_{2}(\mathrm{z})=\frac{1}{1-0.45 z^{-1}}$
Let us quantize the coefficients of $\mathrm{H}_{1}(\mathrm{z})$ and $\mathrm{H}_{2}(\mathrm{z})$ by truncation.

Convert to	Truncate to	Convert to	
. 5_{10}	. 10002	$.100_{2}$	$\rightarrow .5{ }_{10}$
Bina	3-bits	decimal	
Convert to	Convert to	Convert to	
. 45_{10}	. 01112	. 011_{2}	$>.375_{10}$
Bina	3-bits	decimal	

let , $\overline{H_{1}}(\mathrm{z})$ and $\overline{H_{2}}(\mathrm{z})$ be the transfer function of the first-order sections after quantizing the coefficients.
$\overline{H_{1}}(\mathrm{z})=\frac{1}{1-0.5 z^{-1}}$
$\overline{H_{2}}(\mathrm{z})=\frac{1}{1-0.375 z^{-1}}$
let, $\overline{H_{1}}(\mathrm{z})=\frac{Y_{1}(\mathrm{z})}{X(\mathrm{z})}=\frac{1}{1-0.5 z^{-1}}$
$Y_{1}(\mathrm{z})-0.5 \mathrm{z}^{-1} Y_{1}(\mathrm{z})=\mathrm{X}(\mathrm{z})$
$Y_{1}(\mathrm{z})=X(\mathrm{z})+0.5 \mathrm{z}^{-1} Y_{1}(\mathrm{z})$
let, $\overline{H_{2}}(\mathrm{z})=\frac{Y(\mathrm{z})}{Y_{1}(\mathrm{z})}=\frac{1}{1-0.375 z^{-1}}$
on cross multiplying the above equation we get,
$Y(\mathrm{z})-0.375 \mathrm{z}^{-1} Y(\mathrm{z})=\mathrm{Y}_{1}(\mathrm{z})$
$Y(\mathrm{z})=\mathrm{Y}_{1}(\mathrm{z})+0.375 \mathrm{z}^{-1} \mathrm{Y}(\mathrm{z})$

