
Rohini College of Engineering and Technology Department of ECE

Implementation Of Internet of Things with
Python

Generally, prototypes or real-life Internet of Things (IoT) systems have to be designed

and developed swiftly and competently. Whenever this occurs, two activities instantly

come to life: One is to program the IoT devices, and another is to organize a backend

to interact with these devices.

In both activities, we can utilize the Python programming language for their

development. Or we can utilize a functional and practical edition of MicroPython in

order to work on devices with small computing resources, and accordingly, at a very

low price.

In the following tutorial, we will understand the use of Python in programming Internet

of Things (IoT) devices and create a backend for them to work.

But before we get to that, let us briefly discuss the importance of IoT.

Understand the importance of the Internet of Things

The term "Internet of Things" was first coined in the year 1999 by Kevin Ashton. Ever

since the importance and scale of IoT have exploded, one of the chief indicators is that

the market size of the IoT was $151 billion in 2018, with a steady increment year after

year. As per the predictions of marketers, the IoT market could cross the $561 billion

mark by 2022.

Back in the day, we could explain IoT with examples as shown below:

"We can utilize the phone to turn a light bulb on and off in the room."

Nowadays, hardly anyone would be amazed by a smart electricity meter that transmits

readings of the consumption of the electricity, uploads that information to the cloud,

and produces monthly bills sent directly to the e-mail.

IoT is increasingly utilized across industries in order to streamline processes and make

them more efficient. For instance, manufacturing production lines and agriculture are

great examples of various industries taking benefit of the different features of IoT. In

the particular scenario of agriculture, IoT helps in coordinating harvesters with trucks

that have elevators to handle grains efficiently.

https://www.javatpoint.com/iot-internet-of-things
https://www.javatpoint.com/iot-internet-of-things

Rohini College of Engineering and Technology Department of ECE

Why use Python in the Internet of Things?

For many developers, Python is considered as the language of preference in the

market. It is simple to learn, has clean syntax, and has a large online community

supporting it. Python becomes a great choice when it comes to IoT. We can either use

it for the backend side of development or the software development of devices.

Moreover, Python is available to work on Linux devices, and we can make use of

MicroPython for microcontrollers.

Python is the coding language that we can use to reduce the volume of data that we

need to deal with, accessible in the cloud. Python recognizes the needs regardless of

whether we create the IoT project from scratch or interact with actuators, sensors, and

accessories.

Some of the many benefits of working with Python for IoT devices are a large number

of libraries for all types of platforms and the speed it offers at which we can develop

the code.

Python is a great ally for developing device prototypes. Even if we rewrite some of the

scripts while producing to C, C++ or Java to improve performance, the system will

generally function perfectly in Python.

What are the best solutions for IoT in Python?

Some of the best solutions for IoT in the Python programming language are as follows:

1. Python on Raspberry Pi

2. Python on PyBoard

3. ESP8266, ESP32 with Micropython

We will discuss each solution in brief.

Python on Raspberry Pi

The primary objective of running Python on an IoT device that pops up in mind is

grabbing the Raspberry Pi from the table. Python is pre-installed in the operating

system, and the only objective left for us is to write the coding script.

In this scenario, we can control the I/O ports on the expansion bar of the Raspberry Pi.

Fortunately, the board supports wireless communication (Bluetooth and WiFi) and

Ethernet. We can also connect a monitor to the HDMI output, a specialized 3.2"

320x240 TFT LCD, or a low energy consumption E-Ink 2.13" 250x122 display for

Raspberry Pi.

Rohini College of Engineering and Technology Department of ECE

AD

There are controllers available in a large variety of computing power and budgets. We

can choose these controllers for the IoT system - ranging from the fast Raspberry Pi 4

Model B 8 GB to the smallest Raspberry Pi Zero, all supporting the Python

programming language. In case of necessity, we can install the earlier version of Python

2.7 for past compatibility.

Let us consider the following snippet of Python code where we have used the GPIO

Zero library in order to control the I/O ports.

Example:

1. # importing the required modules

2. from gpiozero import Button

3. from time import sleep

4.

5. # creating an object of Button

6. the_button = Button(2)

7.

8. # using the if-else statement

9. while True:

10. if the_button.is_pressed:

11. print("Button Pressed")

12. else:

13. print("Button Released")

14. sleep(1)

Explanation:

The above example demonstrates the receiving and processing of the signals by

pressing the button on the second pin at the moment of release.

AD

The benefits of utilizing this approach are the availability of a large variety of

development utilities, libraries and communications for the most complex devices

based on Raspberry Pi involving video processing from cameras.

Python on PyBoard

Another great solution for Python in IoT devices is the PyBoard with an STM32F405RG

microcontroller.

Rohini College of Engineering and Technology Department of ECE

The PyBoard is considered a compact as well as a powerful electronics development

board. It works on MicroPython. The PyBoard connects to the PC through USB,

providing us with a USB flash drive to store the Python scripts and a serial Python

prompt (a REPL) for instant programming. This works with Windows, MacOS, and Linux.

PyBoard executes MicroPython, which is a lightweight implementation of the standard

CPython interpreter. The official documentation also says: "MicroPython is a lean and

efficient implementation of the Python 3 programming language that includes a small

subset of the Python standard library and is optimized to run on microcontrollers and

in constrained environments. The MicroPythonpyboard is a compact electronic circuit

board that runs MicroPython on the bare metal, giving you a low-level Python

operating system that can be used to control all kinds of electronic projects.

MicroPython is packed full of advanced features such as an interactive prompt,

arbitrary precision integers, closures, list comprehension, generators, exception

handling and more. Yet it is compact enough to fit and run within just 256k of code

space and 16k of RAM."

MicroPython is an entire rewrite of the Python (version 3.4) programming language to

fit and execute on a microcontroller. It involves various optimization for efficiency and

consumes quite less RAM.

MicroPython executes bare-metal on the PyBoard, necessarily providing us with an

Operating System based on Python. The in-built pyb module consists of functions and

classes in order to control the peripherals available on the board, like I2C, UART, ADC,

DAC, and SPI.

The board's dimensions are impressive, taking up around two quarters, 33mm x 43mm

and weighing only 6 grams.

ESP8266, ESP32 with MicoPython

Another option could be using ESP8266 and ESP 32 to run Python. We have to create

a device based on the Internet of Things with low power consumption, great

capabilities, and integration with wireless Wi-Fi networks. More precisely, we can use

MicroPython.

Once we installed Python on the system, we can use the pip installer in the command

line in order to install the esptool module. The syntax for the same is shown below:

Syntax:

1. $ pip install esptool

Rohini College of Engineering and Technology Department of ECE

The installation procedure of the MicroPython is pretty easy. We can download the

firmware from the website and install it with the help of esptool, not forgetting to

format the board before installing it.

We can also use one of the IDEs used for developing with MircoPython. The complete

procedure of development is carried out on a working computer, and then it is

compiled and saved in the memory of an ESP8266 or ESP32 microcontroller.

Let us consider the following example to see how simple the script might look like:

Example:

1. # importing the required modules

2. from machine import Pin

3. import time

4.

5. # creating an object of Pin

6. ledPin = Pin(2, Pin.OUT)

7.

8. # using some functions

9. while True:

10. ledPin.on()

11. time.sleep(1)

12. ledPin.off()

13. time.sleep(1)

Explanation:

In the above snippet of code, we have imported the Pin module from

the machine library along with the time module. We have then created an object

of Pin and execute some functions on it.

MicroPython imposes many restrictions compared to regular Python; however, in

general, we can easily write the necessary functionality on the client-side and execute

it effectively on ESP microcontrollers. This option is relatively more cost-effective than

buying PyBoard.

AD

Understanding the use of Python in IoT Backend

Rohini College of Engineering and Technology Department of ECE

We can use Python as a Backend programming language for the Internet of Things in

many ways. Some of them are as follows:

MQTT protocol with Python

One of the most popular connection methods for IoT devices is MQTT, and it is a

protocol used for effective implementation with Python.

The MQTT protocol is a machine-to-machine (M2M)/Internet of Things connectivity

protocol designed as a highly lightweight publish/subscribe messaging transport. It is

used to connect to remote locations where a small code footprint is needed, and

network bandwidth is premium.

The Python client library called Eclipse Paho MQTT implements versions 3.1, 3.1.1,

and 5.0 of the MQTT protocol.

The code of the Poho library offers a client class that allows applications to link to an

MQTT broker in order to publish messages, subscribe to topics, and receive published

messages. It also delivers some helper functions to make things simpler in publishing

one-off messages to MQTT servers.

Moreover, this library supports Python 2.7.9 and above or 3.5 and above. The

integration of images with older 2.7 versions of Python is straightforward.

IoT backend on Flask in Python

We can also use the Flask microframework to write the backend for the IoT systems.

The Flask microframework is a quick and hassle-free tool that easily set up server-side

I/O information, and it is also packed with many functionalities that make work more

efficient.

We can start by deciding the requests we have to serve from the IoT devices. We then

have to set up the Flask microframework and write a block of code. The GET method

will then return information as per the request from the side of the client.

In several cases, we are best off focusing on the RESTful protocol while working with

the IoT devices. This allows us to simplify the exchange between the components of

the system and helps us to expand the system of exchanging information in the future.

Let us consider a task that has arisen as follows: Display information from IoT devices

on a web page. The Flask microframework will rescue us again with its core template

mechanism where we can design the required web page with the data display involving

graphics.

Rohini College of Engineering and Technology Department of ECE

The disadvantage of utilizing this method is the potential lack of starting the data

transfer from the server to the device. Thus, the IoT must periodically and

independently pull from the server. Rest easy, as there are keys to report this risk. We

can utilize web sockets or a Python library for Pushsafer. PushSafer is an easy and safe

way to send and receive push notifications in real-time to Android, iOS, and Windows

devices (mobile as well as desktop), including internet browsers such as Google

Chrome, Mozilla Firefox, Opera, and many more.

Microsoft Azure IoT backend in Python

Microsoft has released a new open-source extension for IoT to extend the capabilities

of Azure CLI 2.0. Azure CLI 2.0 involves commands to interact with the Azure Resource

Manager and endpoints of management.

For instance, we can utilize Azure CLI 2.0 to build an Azure Virtual Machine or IoT Hub.

The extension of CLI allows an Azure service to complement Azure CLI by providing

users access to additional capabilities specified to services.

The Extension of IoT offers programmers command-line access to the capabilities of

the IoT Edge, IoT Hub and IoT Hub Device Provisioning Service.

Azure CLI 2.0 allows instant management of resources of Azure IoT Hub, devices

provisioning services instances, and associated hubs. The new IoT extension enriches

Azure CLI 2.0 with features such as device management and all IoT Edge capabilities:

1. Azure CLI 2.0 IoT capabilities - Control Plane

2. Managing instances of IoT Hub, consumer - groups and jobs

3. Managing instances of device provisioning service, access-policies, Linked - hub

and certificates

4. New features for extensions - data plane

5. Managing device and edge module identities and their respective twin

definitions

6. Querying IoT Hub for details like device and module jobs, twins, and messaging

routing

7. Invoking methods of device and module

8. Generating SAS tokens and grabbing connection strings

9. Cloud-to-device and Device-to-cloud messaging

10. Device file uploading

11. Device simulation for testing

Rohini College of Engineering and Technology Department of ECE

Amazing hacks of Python

In this tutorial, we will learn how awesome a Python language is for coding. We will

discuss some of its amazing hacks, making Python the best among other languages.

Hacks of Python

Following are some amazingly cool hacks of Python that can make work easy for

users and developers:

1. List Comprehensions: It is the best and efficient technique for getting rid of writing

pointless lines of program.

List comprehension consists of the following parts:

Output expression

Input sequence

A member of the input sequence represented by a variable

The optional predicate parts.

Example:

import functools as FT

First, filter odd numbers

list_1 = filter(lambda K : K % 2 == 1, range(10, 30))

print ("List: ", list(list_1))

Then we will filter the odd square which is divisible by 5

list_1 = filter(lambda K : K % 5 == 0,

 [K ** 2 for K in range(1, 11) if K % 2 == 1])

print ("ODD SQUARE WHICH IS DIVISIBLE BY 5: ", list(list_1))

Here, we will filter negative numbers

list_1 = filter((lambda K : K < 0), range(-10, 10))

print ("Filter negative numbers: ", list(list_1))

Rohini College of Engineering and Technology Department of ECE

Now, implement by using the max() function

print ("Maximum Number in the List: ")

print (FT.reduce(lambda S, T: S if (S > T) else T, [14, 11, 65, 110, 105]))

Output:

List: [11, 13, 15, 17, 19, 21, 23, 25, 27, 29]

ODD SQUARE WHICH IS DIVISIBLE BY 5: [25]

Filter negative numbers: [-10, -9, -8, -7, -6, -5, -4, -3, -2, -1]

Maximum Number in the List:

110

2. Printing a List: Lists are not printed according to our requirements; they are always

printed in unnecessary square brackets and single quotes. But in Python, we have a

solution for printing lists efficiently by using the join method of string. The "join

method" can turn the list into a string by classifying every item into a string and

connecting them with the string on which the join method is used.

Example:

First declare the list:

ABC = ['LPG', 'WWF', 'XYZ', 'MPG']

Then, we will print the list:

print ("The Simple List: ", ABC)

HEre, we will Print the list by using join method

print ('The List by using join method: %s' % ', ' .join(ABC))

we can directly apply Join Function on the List:

print ('Directly applying the join method: ', (", " .join(ABC)))

Output:

The Simple List: ['LPG', 'WWF', 'XYZ', 'MPG']

The List by using join method: LPG, WWF, XYZ, MPG

Directly applying the join method: LPG, WWF, XYZ, MPG

Rohini College of Engineering and Technology Department of ECE

3. Transpose a Matrix: In Python, a user can implement the matrix as a nested list,

which means a list inside a list. Every element of the list is treated as a row of the

matrix.

Example:

M_1 = [[5, 3], [1, 2], [9, 8]]

print ("Matrix 1: ")

for row in M_1 :

 print (row)

rez_1 = [[M_1[K][L] for K in range(len(M_1))] for L in range(len(M_1[0]))]

print ("\n")

print ("Matrix 2: ")

for row in rez_1:

 print (row)

Output:

Matrix 1:

[5, 3]

[1, 2]

[9, 8]

Matrix 2:

[5, 1, 9]

[3, 2, 8]

4. artition of List into "N" Groups: The users can use the iter() function as an iterator

over the sequence.

Example:

First, we will Declare the list:

Rohini College of Engineering and Technology Department of ECE

LIST_1 = ['E_1', 'E_2', 'E_3', 'E_4', 'E_5', 'E_6']

partition_1 = list(zip (*[iter(LIST_1)] * 2))

print ("List after partitioning into different of groups of two elements: ", partition_1)

Output:

List after partitioning into different of groups of two elements: [('E_1', 'E_2'), ('E_3',

'E_4'), ('E_5', 'E_6')]

Explanation:

In the above code, we used "[iter(LIST_1)] * 2" which produced different groups

containing two elements of the 'LIST_1[]' list. That is, the lists of length two will be

generated using the elements from the first list.

AD

5. Print more than One Item of List simultaneously

Example:

list_1 = [11, 13, 15, 17]

list_2 = [12, 14, 16, 18]

Here, we will use zip() function which will take 2 equal length list

and then merge them together into pairs

for K, L in zip(list_1, list_2):

 print (K, L)

Output:

11 12

13 14

15 16

17 18

6. Take the String as Input and Convert it into List:

Rohini College of Engineering and Technology Department of ECE

Example:

AD

Reading a string from input as int format

after splitting it's elements by white-spaces

print ("Input: ")

formatted_list_1 = list(map (int, input().split()))

print ("Output as Formatted list: ", formatted_list_1)

Output:

Input:

 10 12 14 16 18 20 22

Output as Formatted list: [10, 12, 14, 16, 18, 20, 22]

7. Convert List of Lists into Single List:

Example:

importing the itertools

import itertools as IT

Declaring the list geek

LIST_1 = [[1, 2], [3, 4], [5, 6]]

chain.from_iterable() function will return the

elements of nested list

and iterate it from first list

of iterable till the last

end of the list

list_2 = list(IT.chain.from_iterable(LIST_1))

print ("Iterated list of 'LIST_1': ", list_2)

Output:

Iterated list of 'LIST_1': [1, 2, 3, 4, 5, 6]

Rohini College of Engineering and Technology Department of ECE

8. Print the Repeated Characters: Suppose our task is to print the patterns like

"122333444455555666666". We can easily print this pattern in Python without using

for loop.

Example:

print ("1" + "2" * 2 + "3" * 3 + "4" * 4 + "5" * 5 + "6" * 6)

Output:

122333444455555666666

	Implementation Of Internet of Things with Python
	Understand the importance of the Internet of Things
	Why use Python in the Internet of Things?
	What are the best solutions for IoT in Python?
	Python on Raspberry Pi
	Python on PyBoard
	ESP8266, ESP32 with MicoPython

	Understanding the use of Python in IoT Backend
	MQTT protocol with Python
	IoT backend on Flask in Python
	Microsoft Azure IoT backend in Python

