### MULTIVALUED DEPENDENCY AND FOURTH NORMAL FORM (4NF)

### **Multivalued Dependency**

Multivalued dependency occurs when two attributes in a table are independent of each other but, both depend on a third attribute. A multivalued dependency consists of at least two attributes that are dependent on a third attribute that's why it always requires at least three attributes.

Example: Suppose there is a bike manufacturer company which produces two colors(white and black) of each model every year.

| BIKE_MODEL | MANUF_YEAR | COLOR |                                       |
|------------|------------|-------|---------------------------------------|
| M2011      | 2008       | White | [ NS                                  |
| M2001      | 2008       | Black |                                       |
| M3001      | 2013       | White | 6                                     |
| M3001      | 2013       | Black | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |
| M4006      | 2017       | White | * //                                  |
| M4006      | 2017       | Black |                                       |

Here columns COLOR and MANUF\_YEAR are dependent on BIKE\_MODEL and independent of each other.

In this case, these two columns can be called as multivalued dependent on BIKE\_MODEL. The representation of these dependencies is shown below:

- 1.  $BIKE\_MODEL \rightarrow \rightarrow MANUF\_YEAR$
- 2. BIKE\_MODEL  $\rightarrow$   $\rightarrow$  COLOR

This can be read as "BIKE\_MODEL multidetermined MANUF\_YEAR" and "BIKE\_MODEL multidetermined COLOR".

### FOURTH NORMAL FORM (4NF)

 A relation will be in 4NF if it is in Boyce Codd normal form and has no multi-valued dependency.

## What is Multi-valued Dependency?

A table is said to have multi-valued dependency, if the following conditions are true,

- 1. For a dependency  $A \rightarrow B$ , if for a single value of A, multiple value of B exists, then the table may have multi-valued dependency.
- 2. Also, a table should have at-least 3 columns for it to have a multi-valued dependency.
- 3. And, for a relation R(A,B,C), if there is a multi-valued dependency between, A and B, then B and C should be independent of each other.

If all these conditions are true for any relation(table), it is said to have multi-valued dependency.

#### **Example**

#### **STUDENT**

| STU_ID | COURSE    | НОВВУ   | 90 |
|--------|-----------|---------|----|
| 21     | Computer  | Dancing |    |
| 21     | Math      | Singing |    |
| 34     | Chemistry | Dancing |    |
| 74     | Biology   | Cricket | 10 |
| 59     | Physics   | Hockey  |    |

The given STUDENT table is in 3NF, but the COURSE and HOBBY are two independent entity. Hence, there is no relationship between COURSE and HOBBY.

In the STUDENT relation, a student with STU\_ID, **21** contains two courses, **Computer** and **Math** and two hobbies, **Dancing** and **Singing**. So there is a Multi-valued dependency on STU ID, which leads to unnecessary repetition of data.

So to make the above table into 4NF, we can decompose it into two tables:

# STUDENT\_COURSE

| STU_ID | COURSE    |          |
|--------|-----------|----------|
| 21     | Computer  |          |
| 21     | Math      |          |
| 34     | Chemistry | G        |
| 74     | Biology   |          |
| 59     | Physics   | <b> </b> |

# STUDENT\_HOBBY

| STU_ID | НОВВУ   |                                                |
|--------|---------|------------------------------------------------|
| 21     | Dancing | <i>                                       </i> |
| 21     | Singing | * //                                           |
| 34     | Dancing | ARI                                            |
| 74     | Cricket |                                                |
| 59     | Hockey  | PREAD                                          |

## **EXAMPLE 2:**

Below we have a college enrolment table with columns s\_id, course and hobby.

| s_id | course  | hobby   |
|------|---------|---------|
| 1    | Science | Cricket |
| 1    | Maths   | Hockey  |

| 2 | C#  | Cricket |
|---|-----|---------|
| 2 | Php | Hockey  |

As you can see in the table above, student with s\_id 1 has opted for two courses, **Science** and **Maths**, and has two hobbies, **Cricket** and **Hockey**.

You must be thinking what problem this can lead to, right?

Well the two records for student with s\_id 1, will give rise to two more records, as shown below, because for one student, two hobbies exists, hence along with both the courses, these hobbies should be specified.

| s_id | Course  | Hobby   |
|------|---------|---------|
| 1    | Science | Cricket |
| 1    | Maths   | Hockey  |
| 1    | Science | Hockey  |
| 1    | Maths   | Cricket |

And, in the table above, there is no relationship between the columns course and hobby. They are independent of each other.

So there is multi-value dependency, which leads to un-necessary repetition of data and other anomalies as well.

## How to satisfy 4th Normal Form?

To make the above relation satisfy the 4th normal form, we can decompose the table into 2 tables.

OBSERVE OPTIMIZE OUTSPREAD

## **CourseOpted Table**

| s_id | course  |
|------|---------|
| 1    | Science |
| 1    | Maths   |
| 2    | C#      |
| 2    | Php     |

## And, Hobbies Table,

| s_id | Hobby      |
|------|------------|
| 1    | Cricket    |
| 1    | Hockey     |
| 2    | Cricket    |
| 2    | Hockey     |
|      | CNGINEERIA |

## Now this relation satisfies the fourth normal form.

A table can also have functional dependency along with multi-valued dependency. In that case, the functionally dependent columns are moved in a separate table and the multi-valued dependent columns are moved to separate tables.

