
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING Page 1

4.SYMBOLIC EXECUTION

Symbolic execution is a software testing technique that is useful to aid

the generation of test data and in proving the program quality.

Steps to use Symbolic Execution:

 The execution requires a selection of paths that are exercised by a

set of data values. A program, which is executed using actual

data, results in the output of a series of values.
 In symbolic execution, the data is replaced by symbolic values

with set of expressions, one expression per output variable.

 The common approach for symbolic execution is to perform an

analysis of the program, resulting in the creation of a flow
graph.

 The flowgraph identifies the decision points and the assignments

associated with each flow. By traversing the flow graph from an
entry point, a list of assignment statements and branch

predicates is produced.

Issues with Symbolic Execution:

 Symbolic execution cannot proceed if the number of iterations

in the loop is known.

 The second issue is the invocation of any out-of-line code or

module calls.

 Symbolic execution cannot be used with arrays.
 The symbolic execution cannot identify of infeasible paths.

Symbolic Execution Application:

 Path domain checking

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING Page 2

 Test Data generation
 Partition analysis

 Symbolic debugging

MODEL CHECKING

Model checking is the most successful approach that’s emerged for
verifying requirements.

The essential idea behind model checking is A model-checking

tool accepts system requirements or design (called models) and a

property(called specification) that the final system is expected to
satisfy.

The tool then outputs yes if the given model satisfies given

specifications and generates a counterexample otherwise. The

counterexample details why the model doesn’t satisfy the

specification. By studying the counterexample, you can pinpoint the
source of the error in the model, correct the model, and try again.

The idea is that by ensuring that the model satisfies enough system

properties, we increase our confidence in the correctness of the
model. The system requirements are called models because they

represent requirements or design.

So what formal language works for defining models? There’s no

single answer, since requirements (or design) for systems in different
application domains vary greatly.

For instance, requirements of a banking system and an aerospace

system differ in size, structure, complexity, nature of system data,

and operations performed.

In contrast, most real-time embedded or safety-critical systems

are control-oriented rather than data-oriented—meaning that
dynamic behavior is much more important than business logic (the

structure of and operations on the internal data maintained by the

system).

Such control-oriented systems occur in a wide variety of
domains: aerospace, avionics, automotive, biomedical

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING Page 3

instrumentation, industrial automation and process control, railways,

nuclear power plants, and so forth. Even communication and security

protocols in digital hardware systems can be thought of as control
oriented.

For control-oriented systems, finite state machines (FSM) are

widely accepted as a good, clean, and abstract notation for defining

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING Page 4

requirements and design. But of course, a “pure” FSM is not adequate

for modeling complex real-life industrial systems. We also need to:

 be able to modularize the requirements to view them at different
levels of detail

 have a way to combine requirements (or design) of components
 be able to state variables and facilities to update them in order to

use them in guards on transitions.

In short, we need extended finite state machines (EFSM) . Most model

checking tools have their own rigorous formal language for defining
models, but most of them are some variant of the EFSM.

	Steps to use Symbolic Execution:
	Issues with Symbolic Execution:
	Symbolic Execution Application:

